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Milestones in the Development of Neural Networks
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Historical notes

®* McCulloch and Pitts (1943)

® No training to neurons.

® Act as certain logic functions.

* Hebb (1949)

®* Based on a neurobiological viewpoint, describes a learning process.

®* Hebb stated that information is stored in the connections of neurons and postulated a

learning strategy for adjustment of the connection weight.

® Rosenblatt (1958)

®* Proposed the original concept of the perceptron



Historical Notes (Cont.)
®* Widrow and Hoff (1960)

®* The Adaline (adaptive linear element) trained by the LMS learning rule.

®* Minsky and Papert (1969)

* Slowed down neural network research in 1969.
® Perceptrons have limited capabilities, the XOR problem.

®* Kohonen and Anderson (1972)

® Content-addressable associative memories.

®* Von der Malsburg (1973)

® Proposed a cortex model with ability to modify and organize itself.

®* Werbos (1974)

® The first description of the backpropagation algorithm for training multilayer feed-
forward perceptrons.



Historical Notes (Cont.)
* Little and Shaw (1975)

® Use a probabilistic model of a neuron instead of a deterministic one.

®* Lee (1975)

® Presented the fuzzy McCulloch-Pitts neuron mode.

®* Amari (1977)

® Pattern associator. The input pattern induces an appropriates, but different, output pattern.

®* Hopfield (1982)
® Proposed a recurrent neural network
®* The network can store information in a dynamically stable storage and retrieval.

® Kohonen (1982)

® Presented the self-organizating feature map.

® It is an unsupervised, competitive learning, clustering network in which only one neuron is
“on” at a time



Historical Notes (Cont.)
* Oja (1982)

® Presented a single linear neuron trained by a normalized Hebbian learning rule that acts as a
principal-component analyzer.

® The neuron is capable of adaptive extracting the 1st principal eignvector from the input data.

®* Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams (1986)

* "Learning Internal Representations by Error Propagation”
* Multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural network
®* MLP vtilizes a supervised learning technique called backpropagation for training

® Carpenter and Grossberg (1987)

®* Developed self-organizing neural networks based adaptive resonance theory (ART)

* Sivilotti, Mahowald, and Mead (1987)

® The first VLSI realization of neural networks.

®* Broomhead and Lowe (1988)

® First exploitation of radial basis function in designing neural networks.



Traditional Machine Learning

Classification

Learns a method for predicting the instance
class from pre-labeled (classified) instances

Regression

Supervised,

Unsupervised,

reinforcement classification or
learning, active regression, prediction,
learning, etc detection, etc
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Learning with a teacher

* Supervised learning
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Learning without a teacher

* There is no teacher to oversee the learning process.
* There are no labeled examples of the function to be learned by the network.
* 1. Unsupervised learning

* Once the network has become tuned to the statistical regularities of the input
data, it develops the ability to form internal representations for encoding features

of the input. <
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Learning without a teacher

* 2. Reinforcement learning

* The learning of an input-output mapping is performed through continued
interaction with the environment in order to minimize a scalar index of
performance.

* ZMBE—ERIFBENIRERIA - &%EESheuristic reinforcement signal.
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The agent learn to sense and perturb the state of the

environment using its actions to derive maximal reward.

The reward signal is the value function, which faithfully captures < (L/:grenr:;g

the ‘goodness’ of a state. While the reward signal represents the S 1)

immediate benefit of being in a certain state, the value function 3

captures the cumulative reward that is expected to be collected S vation Reward Action

from that state on, going into the future. The objective of an RL
algorithm is to discover the action policy that maximizes the

A

average value that it can extract from every state of the system. Environment




Human Brain

® The neural (nerve) net continually receives information, perceives it, and makes

appropriate decisions.

®* The receptors convert stimuli from the human body or the external environment

into electrical impulses that convey information to the neural net (brain).

®* The effectors converts electrical impulses generated by the neural net into

discernible responses as system output.
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Neurocomputing and Neuroscience

® A biological neuron consists of three main Dendrites
components -
®* Dendrites : receive signals from other neurons °

® Cell body (soma) : sums the incoming signals
from the dendrites and sums the signals from the
numerous synapses on its surface.

® Axon : the axons of other neurons connect to the
dendrite and cell body surfaces by means of
connectors called synapses ° The number of
synaptic connection from other neurons may
range from a few hundred to 10,000.

_ Spines
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Axon terminals

Output signal from axon
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Neurocomputing and Neuroscience

®* Synapses are the points of contact that connect the axon terminals to their

fargets.
® Synapsed T F|#7 %  l
®* Nerve terminal
* Synaptic cleft or gap

® Postsynaptic membrane

!

This way to cell body

Direction of
neural impulse

_ Synaptic knob
Synaptic vesicle
(containing transmitters)

, Synaptic cleft

Presynaptic

Dendrite or cell body
membrane

Postsynaptic membrane



A biological and an artificial neuron

10 neurons in our brain and 103 synapses per neuron.
Activation Functions hyperbolic tangent

tanhx
1.5 10k
1
05
0.5 r
0 + + + y Vg 1 1
410 -8 -6 -4 -2 0 2 4 6 8 10° 3 = 2 F
-0.5F
-1
-15- _— -10F
) f(x) = max(0, x)
i ] 5 .
; rectified linear unit
091 +3.0 ¢
0.8 a=5-
0.7}
0.6 +2.0
0.5F
0.4
03k +1.0 1
02
0.1 ‘ . + + +
L foee @ e ¢
910 % =5 4 2 o z 4 & % B .0 -1.0 +1.0 +3




Basic Models of Artificial Neurons

® An artificial neuron can be referred to as a processing element, node, or

a threshold logic unit.

® There are four basic components of a neuron
* A set of synapses with associated synaptic weights

* A summing device, each input is multiplied by the associated synaptic weight and

then summed.
® A activation function, serves to limit the amplitude of the neuron output.

® A threshold function, externally applied and lowers the cumulative input to the

activation function.



Basic Models of Artificial Neurons

the output of the linear combiner is

Synapses Threshold h
(or bias) _ —wi x=x"
0 uq_qujxj_qu_x W,
2 xl 4 J:1
Vector input where Wq = [qu’ qu""’Wq”]T <R™
signal Axon (0 t . - -
uput - the output of the activation function

xeR"*1< %0

SO — 3,

Output Yo=T(Vg)=1 (uq _gq)
the output of the neuron is given by

Summing  Activation
junction function

x

ol gt Cell body L
Synaptic (soma) Yo =1 Wi X; —0,
weights J=1



Basic Models of Artificial Neurons

® The threshold (or bias) is incorporated into the synaptic weight

vector W, for neuron (.

Fixed [ ¥o=—1 (threshold)
input | x,=1 (bias)
Wq0= 0, (threshold)

Vector input
signal

X 1 ! : : ,
xeR" — —
: Output

Summing  Activation
junction function

(including
threshold or bias)




Basic Models of Artificial Neurons

The effective internal activation potential is written as

n
Vg = qujxj
=0

The output of neuron g is written as
Yog = f(Vq)




Basic Activation Functions

®* The activation function, transfer function,

® Linear or nonlinear

Linear (identity) activation function



Basic Activation Functions

® Hard limiter

® Binary function, threshold function
* (0,1)

®* The output of the binary hard limiter

can be written as

0 ifv, <0
o=l =11 iy 50
>

Hard limiter activation function




Basic Activation Functions

® Bipolar, symmetric hard limiter
. ('] ’ ])

®* The output of the symmetric hard

limiter can be written as

Symmetric limiter activation function

® Sometimes referred to as the

signum (or sign) function.



Basic Activation Functions

® Saturation linear function, piecewise linear

function

® The output of the saturation linear function is

given by




Basic Activation Functions

® Saturation linear function

® The output of the symmetric saturation

linear function is given by

Saturation linear activation function




Basic Activation Functions

® Sigmoid function (S-shaped function)
® Binary sigmoid function

®* The output of the binary sigmoid

function is given by

where a is the slope parameter of the binary sigmoid function

Hard limiter has no derivative at the origin, the binary sigmoid is a continuous and
differentiable function



Basic Activation Functions

® Sigmoid function (S-shaped function)

® Bipolar sigmoid function, hyperbolic tangent
sigmoid
®* The output of the Binary sigmoid function is

given by



Basic Activation Functions

Sigmoid function Rectified linear (RelLU)

f(x) = tanh(x) f(x) = max(0, x)

::ffé)_fﬁ =:i_'_f"(-z;)_fr f(Z}

x=wf(z,)) + w,f(z,) + wi(z,)

x Is called the total input
to the neuron, and f(x)
IS its output

slow to train quick to train




Simple Perceptron

* Simple perceptron (single-layer perceptron)
 FHFrank Rosenblatt (1957)i2 4 -




Example: the neuron model

0.06
Wi
25 W2 f(x)
W3

1.4




Example: the neuron model

-0.06

2.7

25 8.6 f(x)

0002y = 0.06x2.7 + 2.5x8.6 + 1.4x0.002 = 21.34

1.4




What a perceptron does?

The simple perceptron can be regarded as a linear classifier, which belongs to
supervised learning

Minsky and Papert discovered a serious limitation: the perceptron cannot solve
the XOR problem

* Classification: y=1 (wx+w,>0)

XOR problem
y=0 (Wx+w,;<0)

1

y ZSingid ( ): W



Regression

® A regressor models the relationship between a certain number of features

and a continuous target variable

® y=WX+W,

A et Polynomial

y=b+w x;+wyx;

v
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What Is a Neural Network?

A neural network is a massively parallel distributed processor that has a
natural propensity for storing experiential knowledge and making it

available for use. It is similar to the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

knowledge.

® Also referred to as

®* Neurocomputing, connectionist networks, parallel distributed processor.



What Is Neurocomputing?

®* Neurocomputing approach

® Involves a learning process within an ANN

o — Al BRREIVR R D > RN SRR TE T I IT o Hdopattern
recognition

* Associated (55 18)

®* Why can we (human) perform certain tasks much better than a digital
compu’rer?

® Our brain is organized

1 VoA E(nerve) B G B VLT F g BB (1091 0 2GR & L BT 7t
B4 o (510" Bneuron)

* % "4 & _— ¥ adaptive, nonlinear, parallel 5773+ & % o

ut
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What Is Neurocompu’ring? (Cont.)

{ L""\Fl %d zm zFE_ﬁ)z | );\; N
%ﬂ IR (qurn by example)
* ?z 4 (generalize)

®* The NN can classify input patterns to an acceptable level of accuracy even if they were never
used during the training process.

® X IR epA SRR ’ﬁ NIV gE= L
® Parallel computational architecture

® Highly interconnected

® Nonlinearity output



What Is Neurocomputing? (Cont.)

®* Applications of neural networks:
®* Image processing
® Prediction and forecasting

® Associative memory

Clustering

Speech recognition

®* Combinatorial optimization

Feature extraction



Benefits of Neural Networks

®* The use of neural networks offers the following useful properties and
capabilities:
® Nonlinearity
® A neuron can be linear or nonlinear
® Input-Output Mapping
® Learning with a teacher or supervised learning
* Adaptively

®* Neural network adapts their synaptic weights to changes in the surrounding

environment.
® Evidential Response

® Provide confidence information in decision made



Benefits of Neural Networks (Cont.)

® Contextual Information

® Every neuron in the network is potentially affected by the global activity of all other

neurons in the network.

Fault Tolerance

® A neural network exhibits a graceful degradation in performance rather than catastrophic

failure.

VLSI Implement ability

®* The massively parallel nature of a neural network makes it well suited for implementation
using VLSI.

Uniformity of Analysis and Design

® The same notation is used in all domains involving the application of neural networks.

Neurobiological Analogy

® The design of a neural network is motivated by analogy with the brain.



Network Architecture
* Single-layer feed-forward network (usually use threshold neuron function)

@ The input layer of source nodes project onto an output layer of neurons

® Feedforward

* Multi-layer feedforward network (fully connected, usually use sigmoid
neuron function)

® One or more hidden layers.

®* Enabled to extract higher-order statistics.



Network Architecture

Recurrent network

It has at least one feedback

Recurrent network with no self-feedback loops and no hidden neurons

Recurrent network with hidden units
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Compare with target output




Adjust weights based on error

\Kg Training the Neural Networks

Training Dataset

O
y
Fields class 14 .ﬁ
14 2.7 1.9
3834 32 0 2.1 .—ﬁ‘*
6428 17 1
4101 02 O 1.9 .

etc ...
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Compare with target output

“Error=-0.1




Adjust weights based on error

\Kg Training the Neural Networks

Training Dataset

O
Fields class 6.4
1427 19 0
3834 32 0 2.8
6.4 2.8 1.7

41 0.1 0.2 0] 1.7
etc ...




\K; Training the Neural Networks

S Training Dataset
Fields class 6.4
1427 19 0
3834 32 0 2.8
64 28 17
4101 02 0 17
etc ...

Repeat this thousands, maybe millions of times
Each time taking a random training instance, and

making slight weight adjustments reduce the error
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The Decision Boundary Perspective...

Present a training instance / adjust the weights




The Decision Boundary Perspective...

Present a training instance / adjust the weights




The Decision Boundary Perspective...

Present a training instance / adjust the weights




The Decision Boundary Perspective...

Present a training instance / adjust the weights







Classification of Neural Networks

® Supervised learning vs. unsupervised learning

Unsupervised learning
(self-organizing)

No teacher

Self-organizes input data,
discovers for itself collective
properties of the inputs

Learning rules

Correlational Competitive

Synaptic weights Output neurons
adjusted according to compete until
Hebb's learning rule there is a winner

~PCA networks ~ART
~Robust PCA ~Feature map

Supervised learning

External teacher
required

Learns to produce desired
output results by example

Learning rules

Error correction Match-based

| |

Minimizes output error Weights adjusted
w.r.t. network according to degree

weights of similarity

~ Perceptron ~Fuzzy ARTMAP
~Adaline (LMS algorithm) ~Fuzzy LAPART
~Feedforward networks
trained by backpropagation
~RBF networks




