
Machine learning
張傳育 (Chuan-Yu Chang Ph.D.)

國立雲林科技大學資訊工程系特聘教授

chuanyu@yuntech.edu.tw

2

Milestones in the Development of Neural Networks

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

Historical notes

• McCulloch and Pitts (1943)

• No training to neurons.

• Act as certain logic functions.

• Hebb (1949)

• Based on a neurobiological viewpoint, describes a learning process.

• Hebb stated that information is stored in the connections of neurons and postulated a

learning strategy for adjustment of the connection weight.

• Rosenblatt (1958)

• Proposed the original concept of the perceptron

Historical Notes (Cont.)

• Widrow and Hoff (1960)
• The Adaline (adaptive linear element) trained by the LMS learning rule.

• Minsky and Papert (1969)
• Slowed down neural network research in 1969.

• Perceptrons have limited capabilities, the XOR problem.

• Kohonen and Anderson (1972)
• Content-addressable associative memories.

• Von der Malsburg (1973)
• Proposed a cortex model with ability to modify and organize itself.

• Werbos (1974)
• The first description of the backpropagation algorithm for training multilayer feed-

forward perceptrons.

Historical Notes (Cont.)

• Little and Shaw (1975)
• Use a probabilistic model of a neuron instead of a deterministic one.

• Lee (1975)
• Presented the fuzzy McCulloch-Pitts neuron mode.

• Amari (1977)
• Pattern associator. The input pattern induces an appropriates, but different, output pattern.

• Hopfield (1982)
• Proposed a recurrent neural network

• The network can store information in a dynamically stable storage and retrieval.

• Kohonen (1982)
• Presented the self-organizating feature map.

• It is an unsupervised, competitive learning, clustering network in which only one neuron is
“on” at a time.

Historical Notes (Cont.)

• Oja (1982)
• Presented a single linear neuron trained by a normalized Hebbian learning rule that acts as a

principal-component analyzer.

• The neuron is capable of adaptive extracting the 1st principal eignvector from the input data.

• Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams (1986)
• "Learning Internal Representations by Error Propagation”

• Multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural network

• MLP utilizes a supervised learning technique called backpropagation for training

• Carpenter and Grossberg (1987)
• Developed self-organizing neural networks based adaptive resonance theory (ART)

• Sivilotti, Mahowald, and Mead (1987)
• The first VLSI realization of neural networks.

• Broomhead and Lowe (1988)
• First exploitation of radial basis function in designing neural networks.

Traditional Machine Learning

Real World

Data

Feature

Representation

Machine

Learning

Algorithms

Applications

classification or
regression, prediction,
detection, etc

Supervised,
Unsupervised,
reinforcement
learning, active
learning, etc

Image via Abdul Rahid

Learning with a teacher

• Supervised learning

• 藉由input-output examples來訓練網路

• Error signal：desired response和actual response間的差異

• 參數的調整是step-by-step反覆的進行。

• Error-performance surface, error surface

• Gradient Steepest Descent

Environment Teacher

S
Learning

system

Desired

response

Error signal

Actual

response

+
-

Vector describing state of the environment

Learning without a teacher

• There is no teacher to oversee the learning process.

• There are no labeled examples of the function to be learned by the network.

• 1. Unsupervised learning

• Once the network has become tuned to the statistical regularities of the input

data, it develops the ability to form internal representations for encoding features

of the input.
K-Means Gaussian Mixture Mean Shift

• 2. Reinforcement learning
• The learning of an input-output mapping is performed through continued

interaction with the environment in order to minimize a scalar index of
performance.

• 系統觀察一段時間的環境刺激，最後產生heuristic reinforcement signal.

• 此種學習的目的在於將一cost-to-go function最小化，亦即將一連串的步驟行動的累積成本期望
值最小化。

Learning without a teacher

Agent

(Learning

System)

Environment

ActionObservation Reward

The agent learn to sense and perturb the state of the

environment using its actions to derive maximal reward.

The reward signal is the value function, which faithfully captures

the ‘goodness’ of a state. While the reward signal represents the

immediate benefit of being in a certain state, the value function

captures the cumulative reward that is expected to be collected

from that state on, going into the future. The objective of an RL

algorithm is to discover the action policy that maximizes the

average value that it can extract from every state of the system.

Human Brain
• The neural (nerve) net continually receives information, perceives it, and makes

appropriate decisions.

• The receptors convert stimuli from the human body or the external environment

into electrical impulses that convey information to the neural net (brain).

• The effectors converts electrical impulses generated by the neural net into

discernible responses as system output.

Receptors
Neural

Net
Effectors ResponseStimulus

forward

feedback

Neurocomputing and Neuroscience

• A biological neuron consists of three main
components：
• Dendrites ：receive signals from other neurons。
• Cell body (soma)：sums the incoming signals

from the dendrites and sums the signals from the
numerous synapses on its surface.

• Axon ：the axons of other neurons connect to the
dendrite and cell body surfaces by means of
connectors called synapses。The number of
synaptic connection from other neurons may
range from a few hundred to 10,000.

（體幹）

Neurocomputing and Neuroscience

• Synapses are the points of contact that connect the axon terminals to their

targets.

• Synapse由下列所組成：

• Nerve terminal

• Synaptic cleft or gap

• Postsynaptic membrane

A biological and an artificial neuron

w1

w2

wn

1011 neurons in our brain and 103 synapses per neuron.
hyperbolic tangent

rectified linear unit

Activation Functions

Basic Models of Artificial Neurons

• An artificial neuron can be referred to as a processing element, node, or

a threshold logic unit.

• There are four basic components of a neuron

• A set of synapses with associated synaptic weights

• A summing device, each input is multiplied by the associated synaptic weight and

then summed.

• A activation function, serves to limit the amplitude of the neuron output.

• A threshold function, externally applied and lowers the cumulative input to the

activation function.

Basic Models of Artificial Neurons

 

 
































q

n

j

jqjq

qqqq

T

qnqq

n

j

q

T

jqjq

xwfy

ufvfy

www

xwu





1

1n

21

1

bygiven isneuron theofoutput the

)(

isfunction activation theofoutput the

R,...,, where

iscombiner linear theofoutput the

q

T

q

w

wxxw

Basic Models of Artificial Neurons

• The threshold (or bias) is incorporated into the synaptic weight

vector wq for neuron q.

Basic Models of Artificial Neurons

 qq

n

j

jqjq

vfy

q

wv






as written is neuron ofoutput The

 as written is potential activation internal effective The

0

x

Basic Activation Functions

• The activation function, transfer function,

• Linear or nonlinear

Linear (identity) activation function

 
qqlinq vvfy 

• Hard limiter

• Binary function, threshold function

• (0,1)

• The output of the binary hard limiter

can be written as

Hard limiter activation function

 









0 if1

0 if0

q

q

qhlq v

v
vfy

Basic Activation Functions

• Bipolar, symmetric hard limiter

• (-1, 1)

• The output of the symmetric hard

limiter can be written as

• Sometimes referred to as the

signum (or sign) function.

 
















0 if1

0 if0

0 if1

q

q

q

qshlq

v

v

v

vfy Symmetric limiter activation function

Basic Activation Functions

• Saturation linear function, piecewise linear

function

• The output of the saturation linear function is

given by

 






















2

1
 if1

2

1

2

1
- if

2

1
2

1
 if0

q

qq

q

qslq

v

vv

v

vfy Saturation linear activation function

Basic Activation Functions

• Saturation linear function

• The output of the symmetric saturation

linear function is given by

Saturation linear activation function

 
















1 if1

11- if

1 if1

q

qq

q

qsslq

v

vv

v

vfy

Basic Activation Functions

• Sigmoid function (S-shaped function)

• Binary sigmoid function

• The output of the binary sigmoid

function is given by

 
qvqbsq

e
vfy





1

1

where  is the slope parameter of the binary sigmoid function

Hard limiter has no derivative at the origin, the binary sigmoid is a continuous and

differentiable function.

Basic Activation Functions

• Sigmoid function (S-shaped function)

• Bipolar sigmoid function, hyperbolic tangent

sigmoid

• The output of the Binary sigmoid function is

given by

   
q

q

qq

qq

v

v

vv

vv

qqhtsq
e

e

ee

ee
vvfy










2

2

1

1
tanh



















Basic Activation Functions

2
8

slow to train quick to train

Rectified linear (ReLU)

Basic Activation Functions

Sigmoid function

Simple Perceptron

• Simple perceptron (single-layer perceptron)

• 由Frank Rosenblatt (1957)提出。

 

 Td

T
d

T
d

j

jj

xx

www

wxwy

,...,,1

,...,,

1

10

0

1








x

w

xw

W1

W2

W3

f(x)

1.4

-2.5

-0.06

Example: the neuron model

2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x = -0.06×2.7 + 2.5×8.6 + 1.4×0.002 = 21.34

Example: the neuron model

What a perceptron does?

• Classification: y=1 (wx+w0>0)

y=0 (wx+w0≤0)

• The simple perceptron can be regarded as a linear classifier, which belongs to
supervised learning

• Minsky and Papert discovered a serious limitation: the perceptron cannot solve
the XOR problem

w
w0

y

x2

o

w0

 
 xw

T
oy




exp1

1
 sigmoid

xw
To 

x1

x y O

0 0 0

0 1 1

1 0 1

1 1 0

XOR problem

Regression

• A regressor models the relationship between a certain number of features

and a continuous target variable

• y=wx+w0

linear Polynomial

w
w0

y

x

x0=+1

y

x

What Is a Neural Network?

• A neural network is a massively parallel distributed processor that has a

natural propensity for storing experiential knowledge and making it

available for use. It is similar to the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

knowledge.

• Also referred to as

• Neurocomputing, connectionist networks, parallel distributed processor.

What Is Neurocomputing?
• Neurocomputing approach

• Involves a learning process within an ANN

• 一旦類神經網路訓練完成，該類神經網路即可進行特定的工作。例如pattern

recognition

• Associated (聯想)

• Why can we (human) perform certain tasks much better than a digital

computer?
• Our brain is organized

• 大腦神經(nerve)的傳導速度比電子的速度慢(106)倍，但腦神經具有大量平行的計
算能力。(約1011個neuron)

• 大腦是一個adaptive, nonlinear, parallel的計算機。

What Is Neurocomputing? (Cont.)

• 類神經網路的主要能力：
• 由範例學習(learn by example)

• 歸納(generalize)

• The NN can classify input patterns to an acceptable level of accuracy even if they were never
used during the training process.

• 大部分的類神經網路具有類似的特徵：
• Parallel computational architecture

• Highly interconnected

• Nonlinearity output

What Is Neurocomputing? (Cont.)

• Applications of neural networks:

• Image processing

• Prediction and forecasting

• Associative memory

• Clustering

• Speech recognition

• Combinatorial optimization

• Feature extraction

• …

Benefits of Neural Networks

• The use of neural networks offers the following useful properties and

capabilities:

• Nonlinearity

• A neuron can be linear or nonlinear

• Input-Output Mapping

• Learning with a teacher or supervised learning

• Adaptively

• Neural network adapts their synaptic weights to changes in the surrounding

environment.

• Evidential Response

• Provide confidence information in decision made

Benefits of Neural Networks (Cont.)

• Contextual Information

• Every neuron in the network is potentially affected by the global activity of all other

neurons in the network.

• Fault Tolerance

• A neural network exhibits a graceful degradation in performance rather than catastrophic

failure.

• VLSI Implement ability

• The massively parallel nature of a neural network makes it well suited for implementation

using VLSI.

• Uniformity of Analysis and Design

• The same notation is used in all domains involving the application of neural networks.

• Neurobiological Analogy

• The design of a neural network is motivated by analogy with the brain.

Network Architecture
• Single-layer feed-forward network (usually use threshold neuron function)

 The input layer of source nodes project onto an output layer of neurons

 Feedforward

• Multi-layer feedforward network (fully connected, usually use sigmoid

neuron function)

• One or more hidden layers.

• Enabled to extract higher-order statistics.

Network Architecture

• Recurrent network

• It has at least one feedback

• Recurrent network with no self-feedback loops and no hidden neurons

• Recurrent network with hidden units

Unit delay

operator

inputs

outputs

Neural Networks & Training Dataset

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Training The Neural Networks

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Initialize with random weights

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Training the Neural Networks

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Present a training pattern

1.4

2.7

1.9

Training the Neural Networks

Feed it through to get output

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

1.4

2.7

1.9

0.8

Training the Neural Networks

Compare with target output

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

1.4

2.7

1.9

0.8

0

Error=0.8

Training the Neural Networks

Adjust weights based on error

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

1.4

2.7

1.9

0.8

0

Error=0.8

Training the Neural Networks

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Present a training pattern

6.4

2.8

1.7

Training the Neural Networks

Feed it through to get output

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

6.4

2.8

1.7

0.9

Training the Neural Networks

Compare with target output

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

6.4

2.8

1.7

0.9

1

Error=-0.1

Training the Neural Networks

Adjust weights based on error

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

6.4

2.8

1.7

0.9

1

Error=-0.1

Training the Neural Networks

And so on ….

Repeat this thousands, maybe millions of times
Each time taking a random training instance, and

making slight weight adjustments reduce the error

Training Dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

6.4

2.8

1.7

0.9

1

Error=-0.1

Training the Neural Networks

Initial random weights

The Decision Boundary Perspective…

Present a training instance / adjust the weights

The Decision Boundary Perspective…

Present a training instance / adjust the weights

The Decision Boundary Perspective…

Present a training instance / adjust the weights

The Decision Boundary Perspective…

Present a training instance / adjust the weights

The Decision Boundary Perspective…

Eventually ….

The Decision Boundary Perspective…

Classification of Neural Networks

• Supervised learning vs. unsupervised learning

