CHAPTERL:

MULTILAYER PERCEPTRONS

(Chuan-Yu Chang)
Office: EB 212
TEL: 055342601 ext4516
E-mail: chuanyu @untech.edu.tw
Website: http://MIPL.yuntech.edu.tw

Neural Networks

i Networks of processing units (neurons) with
connections (synapses) between them
A The brain iIs composed of
A Large number of neurons: 1010
A Large connectitivity: 10°
A Parallel processing
4 Distributed computation/memory

Robust to noise, failuri/

Basic Models of Artificial neurons

An artificial neuron can be referred to as a
processing element, node, or a threshold logic unit.

There are four basic components of a neuron
A set of synapses with associated synaptic weights

A summing device, each input is multiplied by the
associated synaptic weight and then summed.

An activation function, serves to limit the amplitude of the
neuron output.

A threshold function, externally applied and lowers the
cumulative input to the activation function.

Basic Models of Artificial neurons

Vector input
signal

xeR"X1<

Synapses

Summing
junction

Threshold
(or bias)

%

I Axon (output)
VO e

Outbuz

Activation
function

Cell body
(soma)

Basic Models of Artificial neurons

The output of the linear combiner is

arl q q
1=

Where W _[q1 q2 ---- an]TII Rn31

The output of the activation function is
Yq = T(Vg) = f(uq - qq)

The output of the neuron Is given by

o
_fg aiXj - o

Gl=t

U:aWX_WX XW

Basic Models of Artificial neurons

The threshold (or bias) is incorporated into the synaptic
weight vector w, for neuron q.

Fixed | *o=—1 (threshold)
xo=1 (bias)

input

(b1as)
Vector input
signal
xeiﬁ"XIﬁ Fle) = Y,

Output

: Summing Activation
junction function
L *n 5
:]
Synaptic Weights ------------------------------------
(including

threshold or bias)

Basic Models of Artificial neurons

The effective internal activation potential is written as

n
Vg = A WeiX;
j=0

The output of neuron g is written as

Yq = f(Vq)

Basic Activation Functions

The activation function, transfer function,

Linear or nonlinear

Sin(@g)
10T
1

{0 8 -6 -4 -2 2 4 6 8 10°

Linear (identity) activation function

Basic Activation Functions

Hard limiter
Binary function, threshold function

(0,1)
The output of the binary hard limiter can be written as
"n - <
y, = fhl(v):ieO ff Vo <9)
q gl ifv, 20

0.8

0.6

0.4

0.2F

0 | | | I | 1 N :
10 -8 -6 -4 -2 0o 2 4 6 8 [

gt
Hard limiter activation function

Basic Activation Functions

Bipolar, symmetric hard limiter 2"

15

(-1,1)
The output of the symmetric

1

hard limiter can be written as 0.51

0

1 ifv,<0 7% ™

-2

0

e-
Y, = foulv,)=1 0 if v, =0 o[
'|‘)
il if v,>0
—1.5L

Sometimes referred to as the
signum (or sign) function.

Symmetric limiter activation function

Basic Activation Functions

Saturation linear function, piecewise linear function
The output of the saturation linear function is given by

. fsl(uq)

S0 if v < L 125

i U ?]

_ 1 .1 1
Y = fsl(vq)_’:\vq-‘-i if -Eﬂ:vq ¢§ ik

1 f v, > -

[2 0.8
0.6 T

104
0.2
L] | | | 4——1——""'J Yq

|
-1 -075 -05 -025 0 0.25 0.5 0.75

Saturation linear activation function

Basic Activation Functions

Saturation linear function
The output of the symmetric saturation linear function is given by

e-1 if v, <-1 fra®)
T . I.ST
Yq = 1:sszl() IVq If _1¢Vq ¢1

1 : |

1 1 if Vq >1
057

5 Sis -1 _01,5 0 05 1 s Yy

-0.5
_1__
—1.5-L

Saturation linear activation function

Basic Activation Functions

Sigmoid function (S-shaped function)

The output of the Binary sigmoid function is given by

Yo = be(Vq): 1+el-azvq

where a is the slope parameter of the binary sigmoid function

Josg)
1

0.9
0.8
0.7
0.6
051
0.4
03
02

Binary sigmoid function

0.1F

0 | |
-10 -8 -6 -4 -2

Basic Activation Functions

Sigmoid function (S-shaped function)
Bipolar sigmoid function, hyperbolic tangent sigmoid is given by

eavvOI _ e— avg ~ 1_ e— 2avvq

Yq = fhts(vq) = tanf‘(qu) - e¥i @ 1+

-

- Zavvq

Hard limiter has no derivative

at the origin, the sigmoid is a
~,continuous and differentiable
5" function

Perceptron

The perceptron is the basic processing element.

(Rosenblatt, 1962)

What a Perceptron Does?

A Regresgion:y:wx+wo A Classification:y:1(wx+wo>0)

y |y y “
Wo W ® ° / W 1
/ . ° W /

/ X Ex,v{

Q .X . Q ‘x

Xo=+1
o=w'x

1

y= sigmoid(o) = " exp{- wa]

K Outputs

K parallel perceptrons. X, | =0, ..., dare the inputs and y;, I =1,. . .,K
are the outputs. w; is the weight of the connection from input x; to
output y, .

When used for K-class classification problem, there is a post-
processing to choose the maximum, or softmax if we need the
posterior probabilities.

K Outputs

Classificatian
there are K perceptrons, each of which has a weight vector w.

;
: 0 =W, X
y|:aW|JXJ+W _W;rx | |
% —> = eXm
Activation | T s
= WX) X
y function a Sk

where w; Is the weight from input x to output y; . W is the KI (d
+ 1) weight matrix of w;
When used for classification, during testing, we

chooseC, if v :mkaxyk

Training

Online (instances seen one by one) vs batch (whole
sample) learning:

No need to store the whole sample
Problem may change in time
Wear and degradation in system components

Stochastic gradient-descent: Update after a single
pattern

Generic update rule (LMS rule):
Dwj =Ali - v

Update=LearningFator@DesiredOyput- ActualOutput)@nput

Simple adaptive linear combiner

-]
Xo=1,w_ =b (bias)

I I
[] | |
: e | |
: : % | | Y-
n : \\\ : : _@
[] [] 1 |
I: lllllllllllll wn(k) : : i 4
4 A : ! I

Adaptive algorithm -

e(k)

Simple adaptive linear combiner

The difference between the desired response and
the network response is

e(k) =d(k)- v(k)=d(k)- w" (k)x(k) (1)
The MSE criterion can be written as
J(W) = % E{ez(k)} = %{[d(k) - W' (K) x(k)]z} (2)

Expanding Eq(2)

J(w) = % E{d? (0} - E{d(x (khwik) +%WT(k) Efxox k)

= 2 E{d209}- P9+ 2 W (G,

Simple adaptive linear combiner

Cross correlation vector between the desired response and
the input patterns

p = E{d(k)x(k)}

Covariance matrix for the input pattern

C, = E{x(K)X" (k)]

In the vector space of the weights, the MSE surface for J(w)
has a unique minimum. Accordingly, we can compute the
gradient of the performance measure in Eq(3), with respect to
the weight vector w, and set this result equal to zero for the
optimum conditions WJ(W)
b, Jw)=——=-p+Cwk)=0 (4)

W

The optimal weights w* are obtained as

W* — C)—(lp (5)

The LMS Algorithm

S
Typical MSE surface of an adaptive linear combiner

“ Gradient
\\ ‘ ‘. ' descent
PN O
BRI
\\\\\\“8\“:‘\“":’.‘0’0}2’6’0’;@:’0
5 \ A gy
ool NSO T
S
NS 477
\ N WY (3 0‘0 () [' /,/,II 7/
0.5 B “\ ' \‘ " ’ll ,7;/
A\)

The LMS Algorithm

Practical use of Eq(5) is limited for two reasons:
Evaluation of the inverse of the covariance matrix is very
computationally costly.

Eq(5) is not suitable for online maodifications of the weights
because in most cases the covariance matrix and the cross-
correlation vector are not know a priori.
To resolve these problems, Widow and Hoff develops the LMS
algorithm:
To obtain the optimal values of the synaptic weights when J(w) is
minimum.
Search the error surface using a gradient descent method to find
the minimum value. (when the gradient is zero)

We can reach the bottom of the error surface by changing the
weights in the direction of the negative gradient of the surface.

The LMS Algorithm

Because the gradient on the surface cannot be computed without
knowledge of the input covariance matrix and the cross-correlation
vector, these must be estimated during an iterative procedure.

Estimate of the MSE gradient surface can be obtained by taking
the gradient of the instantaneous error surface.

The gradient of J(w) approximated as

DWJ (W) © % ueZ(k) ‘sz(k) (6)
LW
= - e&(K)x(k)

The learning rule for updating the weights using the steepest
descent gradients method as

w(k +1) = w(k) +/[- B, 3 (W)] = w(k) +/e(k)x(K) (7)

Learning rate specifies the magnitude of the update step for the
weights in the negative gradient direction.

The LMS Algorithm

If the value of A is chosen to be too small, the learning
algorithm will modify the weights slowly and a relatively
large number of iterations will be required.

If the value of /4 is set too large, the learning rule can
become numerically unstable leading to the weights not
converging.

The LMS Algorithm

The scalar form of the LMS algorithm can be written
e(k) =d(k)- a W, (k)% (k) (8)
W (K +1) = w (k) + he(k) % (K) (9)

We must have an upper bound established for the
learning rate parameter to ensure stability.

(10)

O<h<

I
The largest eigenvalue of the
Input covariance matrix C,

The LM3&3lgorithm

To have convergence of the LMS algorithm be less
sensitive to stability problems, the acceptable values for
the learning rate are commonly bounded by

O<h<

trace[CX} 1)

The bound on the learning rate in (11) is more stable the
(10), because

n n

trace{cx} = a /h = a. thh ? /max (12)

h=1 h=1

The LMS Algorithm

Both (10) and (11) assume that we at least have an estimate of the
Input covariance matrix. In most practical cases such an estimate is
difficult to obtain.

Even if some estimate of the covariance matrix is available, the
learning rate is frequently set to a fixed value.

One of the major problems with a fixed learning rate is the accuracy of
the results.

It is perhaps more appropriate to have the learning rate change with time.

Therefore, RKobbprdpédsed aaontdinding algorithm
to change the learning rate (stochastic approximation)

A(K) = E (13)

where kis a very small constant.
dblearningrate ¢ A obl# |

The LMS Algorithm

A reasonable solution is that during the learning process m

should be large at the beginning of training and then gradually
decrease as the network converges. (Schedule-type
adjustment)

Darken and Moody

Search-then converge algorithm

Search phase: /1 is relatively large and almost constant.
Converge phase: A is decrease exponentially to zero.

h
h(k) = 0
(k) 1+k/t

hy >0 and >>1, typically 100<=¢<=500

These methods of adjusting the learning rate are commonly
called learning rate schedules.

(14)

The LMS Algorithm

Adaptive normalization approach (non-schedule-
type)

mis adjusted according to the input data every time step

h(k) =0

el (15)

where A, Is a fixed constant.

Stability is guaranteed if 0< A, <2; the practical range is
0.1<= A, <=1

The LMS Algorithm

Comparison of two learning rate schedules: stochastic approximation
schedule and the search-then-converge schedule.

/MS a constant }

1 IIIIIII] I T TTTTT T TITIIII] T T T T
Classical LMS
06 L /7 algorithm Eq.(14)
Mo =K
_ Search-then-converge
x 1072 schedule (7 = 200)
a4
- Stochastic N
'q"é L approximation \L Eq.(13) 1
% 10 schedule
5
— lllllll 1 Il lllllll 1 | Lllllll it } S I) el L
10° 10! 102 10 10

k [log scale]

Summary of the LMS algorithm

Step 1: set k=1, initialize the synaptic weight vector w(k=1), and
select values for A, and .

Step 2: Compute the learning rate parameter

h(k) = g

C1+k/t
Step 3: Computer the error

n
e(k) =d(k) - @ W, (K)x, (K)
Step 4: Update the synaptic wgialhts

W (K +1) = w (K) +/A(k)e(k)x; (k)

Step 5: If convergence is achieved, stop; else set k=k+1, then go to
step 2.

Example : Parametric system identification

Input data consist of 1000 zero-mean Gaussian random vectors with three
components. The bias is set to zero. The variance of the components of x
are 5, 1, and 0.5. The assumed linear model is given by b=[1, 0.8, -1]".

To generate the target values the 1000 input vectors are used to form a
matrix X=[x;%,€ X004 the desired outputs are computed according to d=b"X

1000 T
C o 1 . XXT_XX ,72):/0;9:0.19361‘:200)(@ b —> d
max

X A A - y
10002 ™" " 1000

0.2 T T L T \ S [e e T lv‘i—\'_T_r—q

The learning process was terminated when o= 09k = 0.1936

VI =1/26%(k) ¢ 10°8

The progress of the learning rate parameter as it is 0
adjusted according to the search-then converge

schedule. 100 o FTEE

u(k)

il

Example (cont.)

Parametric system identification: estimating a parameter vector
associated with a dynamic model of a system given only input/output

data from the system.
The root mean square (RMS) value of the performance measure.

105 T | i e £ T T T T T . ﬁ

[log scale]

JI/Z

10—10 1 11y] Lol L Ll
10° 10! 102 10°
k [log scale]

Training a Perceptron: Regression

In online learning, we do not write the error function over
the whole sample but on individual instances.

Starting from random initial weights, at each iteration we
adjust the parameters a little bit to minimize the error,
without forgetting what we have previously learned.

If this error function is differentiable, we can use gradient
descent.

In regression the error on the single instance pair with
index t, (X, rt), is

Et(Wlxt’rt):%(rt_ yt)z=%[rt- (WTXt)]2 (16)

the online update is

D/t :h(rt- yt)xt_ PT 1T Ul wCwbUwUT 1 wdl EUOD Odeandaged C
]

J in time. This is known as stochastic gradient descent.

Classification

Update rules can be derived for classification problems
using logistic discrimination where updates are done after
each pattern.

With two classes, for the single instance (x', rt) where r;' =
1ifxty Coandrt=01if xtN C,, the single sigmoid output is

t: . d T t
The crdss-e rprcc))lpwié() (17)
Et(w|xt,rt):- r'logy' - (1- rt)log(l- yt) (18)
Using gradient descent, we get the following online
update rule forj =0, ..., d:
(19)

Dw :/7(rt - yt)xtj

Classification

When there are K > 2 classes, for the single instance (X, rY)
where rit = 1 if xXXN C, and r;'= 0 otherwise, the outputs are

o = expw; x' (20)
a I(expwlxt

and the cross-entropy is

Effw,} 1xtrt)=- & i log (21)
Using gradient descent, we get the following online update
rule fori=1,...K, j=0,...,d

D =h(r - yi (22)

Update = Learning Factor-(Desired Output NAgtual Output) -Input

Classification

Fori=1,... K
For j=10,...,d
wjj — rand(—0.01,0.01)
Repeat
For all (x%, ') = X in random order
Fori=1,...,K
O — ()
For j=0,...,d
0; — 0; + W;jX]
Fori=1,...,K
Vi — explo;)/ > explok)
Fori=1,...,K
For j =0,...,d
wij — wij + (K — yi)x|
Until convergence

Perceptron training algorithm implementing stochastic online gradient
descent for the case withK > 2 classes.

Learning Boolean AND
Z4o 4
y =s(X, + X, N ubju

