
CHAPTER 11:

MULTILAYER PERCEPTRONS

(Chuan-Yu Chang)

Office: EB 212
TEL: 05-5342601 ext. 4516
E-mail: chuanyu @yuntech.edu.tw
Website: http://MIPL.yuntech.edu.tw

Neural Networks
2

Ã Networks of processing units (neurons) with

connections (synapses) between them

Ã The brain is composed of

ÄLarge number of neurons: 1010

ÄLarge connectitivity: 105

ÄParallel processing

Ã Distributed computation/memory

Ã Robust to noise, failures

Basic Models of Artificial neurons

Ã An artificial neuron can be referred to as a

processing element, node, or a threshold logic unit.

Ã There are four basic components of a neuron

Ä A set of synapses with associated synaptic weights

Ä A summing device, each input is multiplied by the

associated synaptic weight and then summed.

Ä An activation function, serves to limit the amplitude of the

neuron output.

Ä A threshold function, externally applied and lowers the

cumulative input to the activation function.

Basic Models of Artificial neurons

Basic Models of Artificial neurons
5

Ã The output of the linear combiner is

where

Ã The output of the activation function is

Ã The output of the neuron is given by

ä
=

===

n

j

q
T

jqjq xxxwu

1

ww
T
q

[] 1n
21 R,...,, ³Í=

T
qnqq wwwqw

()qqqq ufvfy q-==)(

ö
ö

÷

õ

æ
æ

ç

å
-= ä

=

q

n

j

jqjq xwfy q
1

Basic Models of Artificial neurons

Ã The threshold (or bias) is incorporated into the synaptic

weight vector wq for neuron q.

Basic Models of Artificial neurons
7

Ã The effective internal activation potential is written as

Ã The output of neuron q is written as

ä
=

=

n

j

jqjq xwv

0

()qq vfy =

Basic Activation Functions

Ã The activation function, transfer function,

Ä Linear or nonlinear

Linear (identity) activation function

() qqlinq vvfy ==

Basic Activation Functions

Ã Hard limiter

Ä Binary function, threshold function

Â (0,1)

ÂThe output of the binary hard limiter can be written as

Hard limiter activation function

()
í
ì
ë

²

<
==

0 if1

0 if0

q

q

qhlq v

v
vfy

Basic Activation Functions

Ä Bipolar, symmetric hard limiter

Â (-1, 1)

ÂThe output of the symmetric

hard limiter can be written as

ÂSometimes referred to as the

signum (or sign) function.

()
î
í

î
ì

ë

>

=

<-

==

0 if1

0 if0

0 if1

q

q

q

qshlq

v

v

v

vfy

Symmetric limiter activation function

Basic Activation Functions

Ä Saturation linear function, piecewise linear function

ÂThe output of the saturation linear function is given by

()

î
î
î

í

îî
î

ì

ë

>

¢¢+

-<

==

2

1
 if1

2

1

2

1
- if

2

1
2

1
 if0

q

qq

q

qslq

v

vv

v

vfy

Saturation linear activation function

Basic Activation Functions

ÄSaturation linear function

ÂThe output of the symmetric saturation linear function is given by

Saturation linear activation function

()
î
í

î
ì

ë

>

¢¢

-<-

==

1 if1

11- if

1 if1

q

qq

q

qsslq

v

vv

v

vfy

Basic Activation Functions

Ä Sigmoid function (S-shaped function)

ÂThe output of the Binary sigmoid function is given by

()
qvqbsq

e
vfy

a-
+

==
1

1

where a is the slope parameter of the binary sigmoid function

Binary sigmoid function

Basic Activation Functions

Ä Sigmoid function (S-shaped function)

ÂBipolar sigmoid function, hyperbolic tangent sigmoid is given by

() ()

q

q

qq

qq

v

v

vv

vv

qqhtsq
e

e

ee

ee
vvfy

a

a

aa

aa

a
2

2

1

1
tanh

-

-

-

-

+

-
=

+

-
===

Hard limiter has no derivative
at the origin, the sigmoid is a
continuous and differentiable
function

Perceptron
15

[]

[]Td

T
d

T
d

j

jj

xx

www

wxwy

,...,,1

,...,,

1

10

0

1

=

=

=+=ä
=

x

w

xw

(Rosenblatt, 1962)

The perceptron is the basic processing element.

What a Perceptron Does?

Ã Regression: y=wx+w0
Ã Classification:y=1(wx+w0>0)

16

w
w0

y

x

x0=+1

w
w0

y

x

s

w0

y

x

()
[]xw

T
oy

-+
==

exp1

1
 sigmoid

xw
To=

K Outputs
17

Ã K parallel perceptrons. xj, j = 0, . . . , d are the inputs and yi, i =1,. . .,K

are the outputs. wij is the weight of the connection from input xj to

output yi .

Ã When used for K-class classification problem, there is a post-

processing to choose the maximum, or softmax if we need the

posterior probabilities.

K Outputs
18

ä
=

=

k
k

i
i

T
ii

o

o
y

o

exp

exp

xw

Classification:

there are K perceptrons, each of which has a weight vector wi

where wij is the weight from input xj to output yi . W is the K Ĭ (d

+ 1) weight matrix of wij

When used for classification, during testing, we

xy

xw

W=

=+=ä
=

T
ii

d

j

jiji wxwy 0

1

k
k

ii yyC max if choose =

Activation

function

Ã Online (instances seen one by one) vs batch (whole

sample) learning:

ÄNo need to store the whole sample

ÄProblem may change in time

ÄWear and degradation in system components

Ã Stochastic gradient-descent: Update after a single

pattern

Ã Generic update rule (LMS rule):

Training
19

()t
j

t
i

t
i

t
ij xyrw -=D h

()InpututActualOutpputDesiredOutctorLearningFaUpdate Ö-Ö=

Simple adaptive linear combiner

() ()() ()()kxkwkwkxkv TT ==

inputs

x0=1, wo=b (bias)

Simple adaptive linear combiner

Ã The difference between the desired response and

the network response is

Ã The MSE criterion can be written as

Ã Expanding Eq(2)

{ } ()[]{ }22)()(
2

1
)(

2

1
)(kxkwkdkeEwJ T-==

() () () () ()()kxkwkdkvkdke T-=-=

{ } { } { }

{ })()(
2

1
)()(

2

1

)()()()(
2

1
)()()()(

2

1
)(

2

2

kwCkwkwpkdE

kwkxkxEkwkwkxkdEkdEwJ

x

TT

TTT

+-=

+-=

(1)

(2)

(3)

Simple adaptive linear combiner

Ã Cross correlation vector between the desired response and
the input patterns

Ã Covariance matrix for the input pattern

Ã In the vector space of the weights, the MSE surface for J(w)
has a unique minimum. Accordingly, we can compute the
gradient of the performance measure in Eq(3), with respect to
the weight vector w, and set this result equal to zero for the
optimum conditions

Ã The optimal weights w* are obtained as

{ })()(kxkdEp=

{ })()(kxkxEC T

x=

0)(
)(

)(=+-=
µ

µ
=Ð kwCp

w

wJ
wJ xw

pCw x

1* -=

(4)

(5)

The LMS Algorithm

Typical MSE surface of an adaptive linear combiner

The LMS Algorithm

Ã Practical use of Eq(5) is limited for two reasons:

Ä Evaluation of the inverse of the covariance matrix is very
computationally costly.

Ä Eq(5) is not suitable for online modifications of the weights
because in most cases the covariance matrix and the cross-
correlation vector are not know a priori.

Ã To resolve these problems, Widow and Hoff develops the LMS
algorithm:

Ä To obtain the optimal values of the synaptic weights when J(w) is
minimum.

Ä Search the error surface using a gradient descent method to find
the minimum value. (when the gradient is zero)

Ä We can reach the bottom of the error surface by changing the
weights in the direction of the negative gradient of the surface.

The LMS Algorithm

Ã Because the gradient on the surface cannot be computed without
knowledge of the input covariance matrix and the cross-correlation
vector, these must be estimated during an iterative procedure.

Ã Estimate of the MSE gradient surface can be obtained by taking
the gradient of the instantaneous error surface.

Ã The gradient of J(w) approximated as

Ã The learning rule for updating the weights using the steepest
descent gradients method as

)()(

)(

2

1
)()(

2

kxke

w

ke
wJ kwww

-=

µ

µ
ºÐ =

[])()()()()()1(kxkekwwJkwkw w hh +=Ð-+=+

Learning rate specifies the magnitude of the update step for the
 weights in the negative gradient direction.

(6)

(7)

The LMS Algorithm

Ã If the value of h is chosen to be too small, the learning

algorithm will modify the weights slowly and a relatively

large number of iterations will be required.

Ã If the value of h is set too large, the learning rule can

become numerically unstable leading to the weights not

converging.

The LMS Algorithm

Ã The scalar form of the LMS algorithm can be written

Ã

Ã We must have an upper bound established for the

learning rate parameter to ensure stability.

ä
=

-=
n

h

hh kxkwkdke
1

)()()()(

)()()()1(kxkekwkw iii h+=+

max

2
0

l
h<<

The largest eigenvalue of the
input covariance matrix Cx

(8)

(9)

(10)

The LMS Algorithm

Ã To have convergence of the LMS algorithm be less

sensitive to stability problems, the acceptable values for

the learning rate are commonly bounded by

Ã The bound on the learning rate in (11) is more stable the

(10), because

{ }xCtrace

2
0 <<h

{ }ä ä
= =

²==
n

h

n

h

xhhhx cCtrace
1 1

maxll

(11)

(12)

The LMS Algorithm

Ã Both (10) and (11) assume that we at least have an estimate of the
input covariance matrix. In most practical cases such an estimate is
difficult to obtain.

Ã Even if some estimate of the covariance matrix is available, the
learning rate is frequently set to a fixed value.

Ä One of the major problems with a fixed learning rate is the accuracy of
the results.

Ä It is perhaps more appropriate to have the learning rate change with time.

Ã Therefore, Robbinôs and Monroôs proposed a root-finding algorithm
to change the learning rate (stochastic approximation)

Ã where k is a very small constant.

Ã ȸlearning rate ᵅᾼ ⇔ыᶶȴ

k
k
k

h =)((13)

The LMS Algorithm

Ã A reasonable solution is that during the learning process m
should be large at the beginning of training and then gradually
decrease as the network converges. (Schedule-type
adjustment)

Ã Darken and Moody

Ä Search-then converge algorithm

Â Search phase: h is relatively large and almost constant.

Â Converge phase: h is decrease exponentially to zero.

Âh0 >0 and t>>1, typically 100<=t<=500

Ä These methods of adjusting the learning rate are commonly
called learning rate schedules.

t

h
h

/1
)(0

k
k

+
= (14)

The LMS Algorithm

Ã Adaptive normalization approach (non-schedule-

type)

Äm is adjusted according to the input data every time step

Ä where h0 is a fixed constant.

Ä Stability is guaranteed if 0< h0 <2; the practical range is

0.1<= h0 <=1

2

2

0

)(
)(

kx
k

h
h = (15)

The LMS Algorithm

Ã Comparison of two learning rate schedules: stochastic approximation

schedule and the search-then-converge schedule.

Eq.(13)

Eq.(14)

m is a constant

Summary of the LMS algorithm

Ã Step 1: set k=1, initialize the synaptic weight vector w(k=1), and
select values for h0 and t.

Ã Step 2: Compute the learning rate parameter

Ã Step 3: Computer the error

Ã Step 4: Update the synaptic weights

Ã Step 5: If convergence is achieved, stop; else set k=k+1, then go to
step 2.

()
t

h
h

/1

0

k
k

+
=

ä
=

-=
n

h

hh kxkwkdke
1

)()()()(

)()()()()1(kxkekkwkw iii h+=+

Example : Parametric system identification

Ä Input data consist of 1000 zero-mean Gaussian random vectors with three

components. The bias is set to zero. The variance of the components of x

are 5, 1, and 0.5. The assumed linear model is given by b=[1, 0.8, -1]T.

Ä To generate the target values the 1000 input vectors are used to form a

matrix X=[x1x2éx1000] the desired outputs are computed according to d=bTX

The progress of the learning rate parameter as it is

adjusted according to the search-then converge

schedule.

b x d 200,1936.0
9.0

,
10001000

1

max
0

1000

1

====º ä
=

t
l

m
h

T
T

x

XX
xxC

The learning process was terminated when

() 82 102/1 -¢= keJ

Example (cont.)

Ã Parametric system identification: estimating a parameter vector
associated with a dynamic model of a system given only input/output
data from the system.

Ã The root mean square (RMS) value of the performance measure.

Training a Perceptron: Regression

Ã In online learning, we do not write the error function over

the whole sample but on individual instances.

Ã Starting from random initial weights, at each iteration we

adjust the parameters a little bit to minimize the error,

without forgetting what we have previously learned.

Ã If this error function is differentiable, we can use gradient

descent.

Ã In regression the error on the single instance pair with

index t, (xt, r t), is

Ã the online update is

() () ()[]22

2

1

2

1
,| tTtttttt ryrrE xwxw -=-=

36 ()t
j

ttt
j xyrw -=D h ÞÏÌÙÌɯϚɯÐÚɯÛÏÌɯÓÌÈÙÕÐÕÎɯÍÈÊÛÖÙȮɯÞÏÐÊÏɯÐÚɯÎÙÈËÜÈÓÓàɯdecreased

 in time. This is known as stochastic gradient descent.

(16)

Ã Update rules can be derived for classification problems
using logistic discrimination where updates are done after
each pattern.

Ã With two classes, for the single instance (xt , r t) where r i
t =

1 if xt ɴC1 and r i
t = 0 if xt ɴC2, the single sigmoid output is

Ã The cross-entropy is

Ã Using gradient descent, we get the following online
update rule for j = 0, . . . , d:

Classification
37

()t
j

ttt
j xyrw -=D h

()tTty xw sigmoid=

() () ()ttttttt yryrE ----= 1 log 1 log ,| rxw

(17)

(18)

(19)

Classification
38

Ã When there are K > 2 classes, for the single instance (xt , r t)

where r i
t = 1 if xt ɴC1 and r i

t = 0 otherwise, the outputs are

Ã and the cross-entropy is

Ã Using gradient descent, we get the following online update

rule for i = 1, . . .,K, j = 0, . . . , d:

 ()t
j

t
i

t
i

t
ij xyrw -=D h

 exp

 exp

ä
=

k

tT
k

tT
ity

xw

xw

{ }() ä-=
i

t
i

t
i

tt
ii

t yrE log ,| rxw

Update = Learning Factor· (Desired Output ǸɯActual Output) · Input

(20)

(21)

(22)

Classification
39

Perceptron training algorithm implementing stochastic online gradient
descent for the case with K > 2 classes.

Learning Boolean AND
40

y = s(x1 + x2 Ǹɯƕ.5)

