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Neural Networks 
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Ã Networks of processing units (neurons) with 

connections (synapses) between them 

Ã The brain is composed of 

ÄLarge number of neurons: 1010 

ÄLarge connectitivity: 105 

ÄParallel processing 

Ã Distributed computation/memory 

Ã Robust to noise, failures 



Basic Models of Artificial neurons 

Ã An artificial neuron can be referred to as a 

processing element, node, or a threshold logic unit. 

Ã There are four basic components of a neuron 

Ä A set of synapses with associated synaptic weights 

Ä A summing device, each input is multiplied by the 

associated synaptic weight and then summed. 

Ä An activation function, serves to limit the amplitude of the 

neuron output. 

Ä A threshold function, externally applied and lowers the 

cumulative input to the activation function. 



Basic Models of Artificial neurons 

 



Basic Models of Artificial neurons 
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Ã The output of the linear combiner is 

 

 

where 

Ã The output of the activation function is 

 

Ã The output of the neuron is given by 
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Basic Models of Artificial neurons 

Ã The threshold (or bias) is incorporated into the synaptic 

weight vector wq for neuron q. 



Basic Models of Artificial neurons 
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Ã The effective internal activation potential is written as 

 

 

Ã The output of neuron q is written as 
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Basic Activation Functions 

Ã The activation function, transfer function,  

Ä Linear or nonlinear 

 

Linear (identity) activation function  
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Basic Activation Functions 

Ã Hard limiter 

Ä Binary function, threshold function 

Â (0,1) 

ÂThe output of the binary hard limiter can be written as 

 

 

 

 

Hard limiter activation function  
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Basic Activation Functions 

Ä Bipolar, symmetric hard limiter 

Â (-1, 1) 

ÂThe output of the symmetric 

hard limiter can be written as 

 

 

 

 

 

ÂSometimes referred to as the 

signum (or sign) function. 
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Symmetric limiter activation function  



Basic Activation Functions 

Ä Saturation linear function, piecewise linear function 

ÂThe output of the saturation linear function is given by 
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Saturation linear activation function  



Basic Activation Functions 

ÄSaturation linear function 

ÂThe output of the symmetric saturation linear function is given by 

Saturation linear activation function  

()
î
í

î
ì

ë

>

¢¢

-<-

==

1 if1

11- if

1 if1

q

qq

q

qsslq

v

vv

v

vfy



Basic Activation Functions 

Ä Sigmoid function (S-shaped function) 

ÂThe output of the Binary sigmoid function is given by 
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where a is the slope parameter of the binary sigmoid function 

Binary sigmoid function  



Basic Activation Functions 

Ä Sigmoid function (S-shaped function) 

ÂBipolar sigmoid function, hyperbolic tangent sigmoid is given by 
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Hard limiter has no derivative 
at the origin, the sigmoid is a 
continuous and differentiable 
function  



Perceptron 
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(Rosenblatt, 1962) 

The perceptron is the basic processing element. 



What a Perceptron Does?  

Ã Regression: y=wx+w0 
Ã Classification:y=1(wx+w0>0) 
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K Outputs 
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Ã K parallel perceptrons. xj, j = 0, . . . , d are the inputs and yi, i =1,. . .,K 

are the outputs. wij is the weight of the connection from input xj to 

output yi .  

Ã When used for K-class classification problem, there is a post-

processing to choose the maximum, or softmax if we need the 

posterior probabilities. 



K Outputs 
18 
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Classification: 

there are K perceptrons, each of which has a weight vector wi  

 

 

 

 

 

 

where wij is the weight from input xj to output yi . W is the K Ĭ (d 

+ 1) weight matrix of wij 

When used for classification, during testing, we 
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Ã Online (instances seen one by one) vs batch (whole 

sample) learning: 

ÄNo need to store the whole sample 

ÄProblem may change in time 

ÄWear and degradation in system components  

Ã Stochastic gradient-descent: Update after a single 

pattern 

Ã Generic update rule (LMS rule): 

Training 
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Simple adaptive linear combiner 
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Simple adaptive linear combiner 

Ã The difference between the desired response and 

the network response is 

 

Ã The MSE criterion can be written as 

 

 

Ã Expanding Eq(2) 
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Simple adaptive linear combiner 

Ã Cross correlation vector between the desired response and 
the input patterns 

 

Ã Covariance matrix for the input pattern 

 

Ã In the vector space of the weights, the MSE surface for J(w) 
has a unique minimum. Accordingly, we can compute the 
gradient of the performance measure in Eq(3), with respect to 
the weight vector w, and set this result equal to zero for the 
optimum conditions 

 

Ã The optimal weights w* are obtained as 
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The LMS Algorithm 

Typical MSE surface of an adaptive linear combiner 



The LMS Algorithm 

Ã Practical use of Eq(5) is limited for two reasons: 

Ä Evaluation of the inverse of the covariance matrix is very 
computationally costly.  

Ä Eq(5) is not suitable for online modifications of the weights 
because in most cases the covariance matrix and the cross-
correlation vector are not know a priori. 

Ã To resolve these problems, Widow and Hoff develops the LMS 
algorithm: 

Ä To obtain the optimal values of the synaptic weights when J(w) is 
minimum. 

Ä Search the error surface using a gradient descent method to find 
the minimum value. (when the gradient is zero) 

Ä We can reach the bottom of the error surface by changing the 
weights in the direction of the negative gradient of the surface. 

 



The LMS Algorithm 

Ã Because the gradient on the surface cannot be computed without 
knowledge of the input covariance matrix and the cross-correlation 
vector, these must be estimated during an iterative procedure. 

Ã Estimate of the MSE gradient surface can be obtained by taking 
the gradient of the instantaneous error surface. 

Ã The gradient of J(w) approximated as 

 

 

 

Ã The learning rule for updating the weights using the steepest 
descent gradients method as 
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Learning rate specifies the magnitude of the update step for the 
 weights in the negative gradient direction.  
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The LMS Algorithm 

Ã If the value of h is chosen to be too small, the learning 

algorithm will modify the weights slowly and a relatively 

large number of iterations will be required. 

Ã If the value of h is set too large, the learning rule can 

become numerically unstable leading to the weights not 

converging. 



The LMS Algorithm 

Ã The scalar form of the LMS algorithm can be written 

 

Ã  

 

 

Ã We must have an upper bound established for the 

learning rate parameter to ensure stability. 
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The LMS Algorithm 

Ã To have convergence of the LMS algorithm be less 

sensitive to stability problems, the acceptable values for 

the learning rate are commonly bounded by 

 

 

Ã The bound on the learning rate in (11) is more stable the 

(10), because 
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The LMS Algorithm 

Ã Both (10) and (11) assume that we at least have an estimate of the 
input covariance matrix. In most practical cases such an estimate is 
difficult to obtain. 

Ã  Even if some estimate of the covariance matrix is available, the 
learning rate is frequently set to a fixed value.  

Ä One of the major problems with a fixed learning rate is the accuracy of 
the results. 

Ä It is perhaps more appropriate to have the learning rate change with time. 

Ã Therefore, Robbinôs and Monroôs proposed a root-finding algorithm 
to change the learning rate (stochastic approximation ) 

 

 

 

Ã where k is a very small constant. 

Ã ȸlearning rate ᵅᾼ ⇔ыᶶȴ 
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The LMS Algorithm 

Ã A reasonable solution is that during the learning process m 
should be large at the beginning of training and then gradually 
decrease as the network converges. (Schedule-type 
adjustment) 

Ã Darken and Moody 

Ä Search-then converge algorithm 

Â Search phase: h is relatively large and almost constant. 

Â Converge phase: h is decrease exponentially to zero. 

 

 

 

Âh0 >0 and t>>1, typically 100<=t<=500 

Ä These methods of adjusting the learning rate are commonly 
called learning rate schedules. 

t

h
h

/1
)( 0

k
k

+
= (14) 



The LMS Algorithm 

Ã Adaptive normalization approach (non-schedule-

type) 

Äm is adjusted according to the input data every time step 

 

 

 

 

Ä where h0 is a fixed constant. 

Ä Stability is guaranteed if 0< h0 <2; the practical range is 

0.1<= h0 <=1 
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The LMS Algorithm 

Ã Comparison of two learning rate schedules: stochastic approximation 

schedule and the search-then-converge schedule. 

Eq.(13) 

Eq.(14) 

m is a constant  



Summary of the LMS algorithm 

Ã Step 1: set k=1, initialize the synaptic weight vector w(k=1), and 
select values for h0 and t. 

Ã Step 2: Compute the learning rate parameter 

 

 

Ã Step 3: Computer the error 

 

 

Ã Step 4: Update the synaptic weights  

 

 

Ã Step 5: If convergence is achieved, stop; else set k=k+1, then go to 
step 2. 
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Example : Parametric system identification 

 

Ä Input data consist of 1000 zero-mean Gaussian random vectors with three 

components. The bias is set to zero. The variance of the components of x 

are 5, 1, and 0.5. The assumed linear model is given by b=[1, 0.8, -1]T.  

Ä To generate the target values the 1000 input vectors are used to form a 

matrix X=[x1x2éx1000] the desired outputs are computed according to d=bTX 

 

The progress of the learning rate parameter as it is 

adjusted according to the search-then converge 

schedule. 
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Example (cont.) 

Ã Parametric system identification: estimating a parameter vector 
associated with a dynamic model of a system given only input/output 
data from the system. 

Ã The root mean square (RMS)  value of the performance measure. 



Training a Perceptron: Regression 

Ã In online learning, we do not write the error function over 

the whole sample but on individual instances.  

Ã Starting from random initial weights, at each iteration we 

adjust the parameters a little bit to minimize the error, 

without forgetting what we have previously learned. 

Ã If this error function is differentiable, we can use gradient 

descent. 

Ã In regression the error on the single instance pair with 

index t, (xt, r t ), is 

 

Ã the online update is 
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 in time. This is known as stochastic gradient descent. 

(16) 



Ã Update rules can be derived for classification problems 
using logistic discrimination where updates are done after 
each pattern. 

Ã With two classes, for the single instance (xt , r t) where r i
t = 

1 if xt  ɴC1 and r i
t = 0 if xt  ɴC2, the single sigmoid output is 

 

Ã The cross-entropy is 

 

 

Ã Using gradient descent, we get the following online 
update rule for j = 0, . . . , d: 

 

 

 

Classification 
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Classification 
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Ã When there are K > 2 classes, for the single instance (xt , r t) 

where r i
t = 1 if xt  ɴC1 and r i

t = 0 otherwise, the outputs are 

 

 

Ã and the cross-entropy is 

 

 

Ã Using gradient descent, we get the following online update 

rule for i = 1, . . .,K,  j = 0, . . . , d: 
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Classification 
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Perceptron training algorithm implementing stochastic online gradient  
descent for the case with K > 2 classes. 



Learning Boolean AND 
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y = s(x1 + x2 Ǹɯƕ.5) 


