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Introduction

1 SVMK @n W pattern classificationé | 1 A ]
1 A@YSVMyGMzX 6. 1 Alinear machine

1 The main idea of a support vector machine is to construct a
hyperplane as the decision surface in such a way that the
margin of separation between positive and negative
examples is maximized.

! The support vector machine is an approximate
Implementation of the method of structural risk minimization.

. SVM z X A [ Y SYMa  problem-domain
" knowledgeVY T wo. A generalization performance |
0 SVM  AA i support vector x€ ] 9. «x

A inner-product kerneIL

. inner-product kernelA MCh YKo N7 Af f
f M A n L
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Background
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PR X p+xq- pq=0
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Background (cont.)

discriminant function o
a
g(x)=w'x+b =w' &
¢
7 glx,)=0
\ g(x) =r|w|

w Q
+r—0Q+Db
w2
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Optimal Hyperplane for Linearly Separable Patterns

1 g training sample {(x;, d)}N_,Y Z desire
responset K nun A+1H-1]
L/ 1 Kn A hyperplaner D

w'x+b=0 ©-
Z MY xt input vectorY wt K A weight
vectorY bt biasY, " K 1 u A D
w'x +b2 0 for d =+1
(6.2)

w'x +b<0 for d =-1
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Optimal Hyperplane for Linearly Separable Patterns

~

N & J wé 1 1DbY/ KOO Eq(6.1)'HF A
hyperplaneé QA N A t margin of
separationY W roy |

L SVMA3 7 © & A hyperplaneY v margin of
separationr €o0 |

. The decision surface is referred to as the optimal
hyperplane.

W€ by " ®y VA ~ . & bias|,
/AWy d9E A - RAf &Y A optimal
hyperplaneK @y D

T —
WX +b, =0 (6.3)
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Optimal Hyperplane for Linearly Separable Patterns

Support
vectors

A A
Class 1 \\\ R

Many linear classifiers (hyperplanes) separate the data.
However, only one achieves maximum separation.
Which one should we choose?

FIGURE 6.1 lllustration of
the idea of an optimal T —
w X+b=0 T —
hyperplane for linearly wx+b=-1
separable patterns.
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Optimal Hyperplane for Linearly Separable Patterns

1 The algebraic measure of the distance from x to the
optimal hyperplane is defined as a discriminant function

— T 4 3 opti |
X)=W~.X + . X plima
g(x) 0 0y hyperplaneA (6.4)
L, + Eq(6.3) Y "HW ' g(x,)=0 |
— \ns 1 —_
a(x) =wyx +h, = rHWoH
OI' Hi_” Optimal
g (X) | hyper:lane
W
/ ol |W0” woX +b,21  ford =+1
Desired algebraic distance wix +b ¢-1 ford =-1
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Optimal Hyperplane for Linearly Separable Patterns

NNASAg C T ={(x,d)} p optimal
hyperplaneA W€ b,
" 6.2K~ (W,b) Rt w JU
wix +hb 21 ford =+1 (6.6)
wiXx +b,¢-1 ford =-1
The particular data points (x;,d;) for which the first or
second line of Eqg. (6.6) Is satisfied with the equality sign

are called support vectors.

L The support vectors are those data points that lie closest to the
decision surface and are therefore the most difficult to classify.

5

5
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Optimal Hyperplane for Linearly Separable Patterns

1 5 G support vector x® for which do=1Y &
K

gxN =w!x® @ =@ ford® =@ (6.7)

1~ Eq(6.5) Y The algebraic distance from support

vector to optimal hyper plane is
g 1

) if d® = +1
(s !
rzg(x )4 V-Vf (6.8)
ol 5 fd®=-1
[Wo

1 Margin of separation between two classes

€EorsYT 0 Ho r=9r = 2 -
" . WA Euclidean ||W ” ﬁ £ Z%CQYJ (6.9)
0

norm HWt ZNMr

I Maximum r implies minimizes ||w,||
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Optimal Hyperplane for Linearly Separable Patterns

. Quadratic Optimization for Finding the Optimal
Hyperplane
LANASA OviaC A T={(x%, AN} Y W
" p ¢ Rt N Aoptimal hyperplﬁ EQ6.6)A  JU j
d(W'x +b)2 1 fori =12,...,N " (6.10)

L 11 Y "I constrained optimization problemK = D

Given the training sample {(x;, d,)}'_,, find the optimum values of the weight vector w and
bias b such that they satisfy the constraints

d(w'x;, + b) = 1 fori=1,2,...,N

and the weight vector w minimizes the cost function:

. Q N yew JUY
1, 'I margin of separation
P(w) = S w'w b soft
2@% I-|-| "H ’ys( Medlical Image Processing Lab. ) 11
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Optimal Hyperplane for Linearly Separable Patterns

L |
Kv i lagrange multipliersAw (6.10) /U Vo A
0 Lagrangian function Tt d

5

I(w,b,a) :%WTW— gai [0 (w™x, +b)- 1] (6.11)

a are called Lagrange multipliers
| A N Jwb,a) A (saddle point) Y,
Knn Jwba weéb nYu Q t 0

Minimized with respect to w and b; it also has to be

maximized with respect to ag Wy b oMLY
K
N

a] W, b, a — ~ d . 612
Condition 1: ( 5 ) =0 —) W iazlal i Xi ( )
Wb ) N
/W, b, a —p Jad = 6.13
Condition 2: ( s =0 2':11 ad, =0 (6.13)
S I-|-| "H %( Medlical Image Processing Lab. ) 12
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Optimal Hyperplane for Linearly Separable Patterns

o

I
. o (saddle point) A & 1 Lagrange multiplier aY u
v AM A b 4l
a [di (w'x, +b)-1]=0 for i=12,...,N (6.14)
" Txo, REgGIMAM K 1 1, M Ay
X' KuhnxTucker condition],

Vo
1 Dual probl roblem Xx71° A V |
b° oY m U | (0.  decision surfacep Y K
L vy € )

Duality theorem
. If the primal problem has an optimal solution, the dual problem also has an
optimal solution, and the corresponding optimal values are equal.
. In order for w, to be an optimal primal solution and a, to be an optimal dual
solution, it is necessary and sufficient that w, is feasible for the primal problem,

and F(Wo): J(Wo’bo’ao): min‘J(WO’bO’aO)

N\
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Optimal Hyperplane for Linearly Separable Patterns

t 3 primal problem & D> dual problemY \l I] )Eq(6.11) /A

' ‘Q
1 N
J(w,b,a)==w'w-|§ adw'x| - +a a.
2 =1 o & (6.15)

OEQ®6.12) Y ww V© laa,dlxl g

T

N
w'wg§ adw'x -aaaa d.d.x;

el e R A
=1 i=1 j=1

on" d qu\fls 15) Y - J(w, b, a):Q(a)

1 N
Q(a) = aa -=-a aaa did;x (6.16)
2 =1 j=1
JOQ\% |1_| "H %( Mediical Image Processing Lab. ) 14
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Optimal Hyperplane for Linearly Separable Patterns

The Dual Problem

Given the training sample {(x;, d))}- , find the Lagrange multipliers {0}, that maximize
the objective function
T Z 4,

N
i=1

N
T
z afa]dldjxl Xj
j=1

b | =

N
Qo) = ; a; =

subject to the constraints

S Dual problemy O
(1) Z e =0 NN B
(2) a_ =0 fori=1,2,..,N primal problemT Y T

O dual problemf & optimal & (C  a,;) i
4 (6.12) 3 optimal weight w,, W, = .a: a,,d X (6.17)
OEq(6.7)n Y' 9 (6.18) (3 optimal bias b,
b, =1- w;x® ford® =1 (6.18)
PN//S I "H A& ( Medical Image Processing Lab. ) 15
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Optimal hyperplane for non-separable patterns
s for linearseparaprey———t non-separabie paterm

(6 n pattern 9 partition margins )

o

~

hyperplaneA & M
¢ 1. Ascale b

T L P — o~ e
di(w xi+b)2 1- x,0 0 T=12,....,,N - 0txel Yoy N
region of separationY oy
The x are called slack variables decision surfaceA £ |
Oy N & patternu 1 A deviation) J
o ‘\‘b&& \‘Z%QeJ
/ N ) " &Q@& &QQ,&Q
MY T
decision S .
surfaceA /A vectors vertors
1 Y KA
K 7
© @¢X|¢1/E 7 3(|>lﬂ/£E "
1
z@% FIGURE 6.3 (a) Data point x; (belonging to class ,) falls inside the region of separation, )
but on the right side of the decision surface. (b) Data point x; (belonging to class €,) falls 16
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Optimal hyperplane for non-separable patterns

LAYNYAD R G separating nyperplaney v
Axd " Hoo |
N

d(€) = 21 I(§ — 1)

0 iféE<0 Correct but maybe inside the margin

I(§) = :
(€) {1 if &> 0 |ncorrect

e CO-Y o _N
nI_BBL‘QRn @(E)—;g,—

1 N
F(w,x)==w'w+C3 x
Then (W, %) 2 ,a;l | (6.23)
The first term in Eq. (6.23) is related to minimizing the VC dimension of the
support vector machine.
The second term is an upper bound on the number of the test errors.

The parameter C is user determined (1)experimentally (2)analytically.
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Optimal hyperplane for non-separable patterns

Then for the soft classitication. (_nonseparableA 1 )

The primal problem for the nonseparable case is stated as

Given the training sample {(x;, d,)}'_,, find the optimum values of the weight vector w and
bias b such that they satisfy the constraint

d(w'x, +b) = 1-&  fori=1,2,....N
€&, =0 foralli

and such that the weight vector w and the slack variables & minimize the cost functional

d(w, §) = —ww+C2§

where C is a user-specified positive parameter.

D
=
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Optimal hyperplane for non-separable patterns

n Lagrange multiplieré 6.2 RAE YK . 1
nonseparable patternA dual problemt

Given the training sample {(x;, d,)}_,, find the Lagrange multipliers {o;}Y. | that maximize

the objective function

N 1 N N
Q(a) = 2 -5 21 ,Si o0 d; X, X;
subject to the constraints
N
() ,=21 ik = Slack variables x;  dual }
2 0so=C fori=1,2,..,N problemb /10 3]

where C is a user-specified positive parameter.
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Optimal hyperplane for non-separable patterns

1 . WA V t
aaOQ X (6.24)

Z MNL support vectorsA !
1 f & biasA V1Y? n Kuhn-Tucker Jul¢ D

ad(w'x +b)- 1+x|=6,6 6 i=12...N (6.25)

mx =0,_ 1=12,....,N (6.26)
) saddle pointY primal problemA Lagrangian function xA u
boYL AN KW AMapmJ\
a+m=C A N RO<a,<CYvxt | aq [6.27)
X = 0 if a < C W Eqé(\6.25)f\_(u .“ V Abiasb T 5 6.28)
v/ Ma p "HX I'bA A %
oy T L TR Y S TR B




How to Build a Support Vector Machine for Pattern Recognition

. SVMA Ef ¢ut Y ZA W b
¢ 49, 1T nA 3¢ A E |
.7 Coverbds theorem on the sepal
. ¢ E K BC A ‘E Y patternx - A
K nn |
19 ¢ VAhyperplaneK E ¢ A PN |
. ''n hyperplane  Wwu . E A Atn}

j (.)\.

Feature space

Input’(data) space
LI "H

%
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How to Build a Support Vector Machine for Pattern
Recognition (cont.)

Inner-Product Kernel
LT XQY my 49E MACHY 9, Y {i0m_}®

j C 49E Bm A E AT A )
1 / i(X) is defined a priori for all J.
L/ Ko ¢ hyperplane
m,
awy (X)+b=0 (6.29)
j=1
ZM  Wwlhey ¢ E B pE A #
" Y bt biasY Wo=hbY j,(X)=1Y/ o nK CE
Oy D m,
aw/;(x)=0 (6.30)
j=0
Sg% |.,.| "H %( Medlical Image Processing Lab. ) 29
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How to Build a Support Vector Machine for Pattern
Recognition (cont.)

LS iX)DY q . X ~n WA E

J ()=} 600 6(X)sees 1 O] (6.31)
l,f K (6.32)
/ o(X) =1 for all x
1 11 Y decision surfacet
WT./' (x) =0 Hyperplane (6.33)
1 ¥ EQq(6.12) Y EQ(6.12) 9. XWZ
J(X) 9
w=g a,dys (x) (6.34)
=1
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How to Build a Support Vector Machine for Pattern
Recognition (cont.)

. Eq(6.34) 9 Eq(0.33) Y KU E A decision surface
(6.35)

The term j T(x,)/ (X) represents the inner product of two
vectors induced in the feature space by the input vector x and
the input pattern x;

(6.36)

The inner-product kernel is a symmetric function of its

arguments _ _ _
K Is a symmetric function

I Eqe36) deqeask | (©:38)
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