
Chapter 9 

Morphological Image Processing 

Ӵ ὭּדᶾЄ  Џ  ṅἬשׁ

Ṏ(Chuan-Yu Chang ) Ђ 

Office: EB 212 

TEL: 05-5342601 ext. 4516 

E-mail: chuanyu@yuntech.edu.tw 

 



2 

Introduction 

Â Mathematical morphology 
Ç A tool for extracting image components that are 

useful in the representation and description of 
region shape, such as boundaries, skeletons, and 
convex hull. 

Â Sets in mathematical morphology represent 
objects in an image. 

Â 2D integer space Z2 

Ç
 (x,y) coordinates 

Â Z3: gray-scale digital images  

Ç (x,y) coordinates, and gray-level value 



3 

Preliminaries 
Â  Let A be a set in Z2, If a=(a1, a2) is an element of A 

 

Â If a is not an element of A, we write 

 

Â The set with no elements is called the null or empty set and 

denoted by the symbol       . 

Â The elements of the sets with which we are concerned are 

the coordinates of pixels representing objects. 

Ç Ex: 

 
 
set C is the set of elements, w, such that w is formed by 

multiplying each of the two coordinates of all the elements of 

set D by -1. 

 

AaÍ

AaÎ

D}  -d, for d { w | w C Í==

(9.1-1) 

(9.1-2) 

f



4 

Â Basic Concepts from Set Theory 
Ç Subset 
Â If every element of a set A is also an element of another 

set B, then A is said to be a subset of B. 
 
 

Ç Union 
Â The set of all elements belonging to either A, B, or both 

 
 

Ç Intersection 
Â The set of all elements belonging to both A and B 

 

 

Preliminaries 

BAÌ

BAC Ç=

BAD Æ=

(9.1-3) 

(9.1-4) 

(9.1-5) 
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Preliminaries (cont.) 

Ç Disjoint (mutually excusive) 

Â If the two set have no common elements 

 

 

Ç Complement:  

Â The complement of a set A is the set of elements not 

contained in A 

 

 

Ç Difference: 

Â the set of elements that belong to A, but not to B. 

cBABwAwwBA Æ=ÎÍ=- },|{

f=ÆBA

}|{ AwwAc Î=

(9.1-6) 

(9.1-7) 

(9.1-8) 
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Preliminaries (cont.) 
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Preliminaries (cont.) 

Ç Reflection 

 

 

Ç Translation 

 

},|{Ĕ BbforbwwB Í-==

},|{)( AaforzaccA z Í+==

(9.1-9) 

(9.1-10) 
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Â The principal logic operations used in image 

processing are AND, OR, and NOT  

Â The three basic logical operations 

Ç Performed on a pixel by pixel basis between 

corresponding pixels of two or more images. 

Ç Logical operation are restricted to binary variables 

 

 

 

Ç These operations are functionally complete in the 

sense that they can be combined to form any other 

logic operation 

 

Logic Operations Involving Binary Images 
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ïBlack indicates a binary 1  

ïWhite indicates a 0. 

Logic Operations Involving Binary Images 
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Dilation and Erosion 

Â For sets A and B in Z2 

Â The dilation of A by B, denoted 
 
 
 
 
 where set B is referred to as the structuring 
element. 

Â The dilation of A by B is the set of all 
displacements, z, such that     and A overlap 
by at least one element. 

}])Ĕ[(|{

})Ĕ(|{

AABz

ABzBA

z

z

ÌÆ=

¸Æ=Ä f

BĔ

(9.2-1) 

(9.2-2) 
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Dilation and Erosion (cont.) 
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Dilation and Erosion (cont.) 
Â Example of dilation 
Ç bridging gaps 
Â The maximum length of the breaks is known to be two 

pixels. 

Â A simple structuring element that can be used for 
repairing the gaps is shown in Fig. 9.5(b) 
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Dilation and Erosion 

Â For sets A and B in Z2 

Â The erosion of A by B, denoted 

 

 

 

 where set B is referred to as the structuring element. 

Â The erosion of A by B is the set of all points z such 

that B, translated by z, is contained in A.  

})(|{ ABzBA zÌ=Ⱦ

BAQ
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Dilation and Erosion 
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Example of erosion 

-eliminating irrelevant detail 

Dilation and Erosion 
ṿӣ13x13ᾼѠᶮ Ȳ

(a) ᴩerosion 

ṿӣ13x13ᾼѠᶮ Ȳ
(b) ᴩdilation 
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Example of erosion 

-eliminating irrelevant detail 
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Opening and Closing 

Â Opening 

Ç Generally smoothes the contour of an object, breaks narrow 

isthmuses, and eliminates thin protrusions. 

 

 

 

Ç The opening A by B is the erosion of A by B, followed by a dilation of 

the result by B.  

Â View the structuring element B as a flat ɶrolling ballɷ 

Â The boundary of              is then established by the points in B that reach 

the farthest into the boundary of A as B is rolled around the inside of this 

boundary. 

BAA

() (){ }ABB

BBABA

zz ÌÇ=

Ä=

|

)( ȾA



18 

Â Closing 

Ç Tends to smooth sections of contours, fuses narrow breaks 

and long thin gulfs, eliminates small holes, and fills gaps in 

the contour.  

Ç The closing of set A by structuring element B, denoted 

 

 

Ç The closing of A by B is simply the dilation of A by B, 

followed by the erosion of the result by B.  

BBABA Ⱦ)( Ä=¶

Opening and Closing 

BA¶
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Opening and Closing 



20 

Opening and Closing 

Â The opening operation satisfies the 

following properties  

Ç A B̄ is a subset of A 

Ç If C is a subset of D,  

then C ̄  B is a subset of D ǯB 

Ç (A  ̄B)  ̄B=A  ̄B 
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Opening and Closing 

Â The properties of closing operation 

Ç A is a subset of A¶B 

Ç If C is a subset of D,  

then C ¶ B is a subset of D ¶ B 

Ç (A ¶ B) ¶ B=A ¶ B 

 

Ç Multiple openings or closings of a set have no 

effect after the operator has been applied once. 
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Opening and Closing 
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The Hit-or-Miss Transformation 
Â The Hit-or-Miss Transformation 

Ç The morphological hit-or-miss transform is a tool for 
shape detection. 

Ç If B denotes the set composed of A and its background, 
the match of B in A, denoted A B , is 
 
A B = (AדX)ž[Acד(W-X)] 
 

Ç Let B=(B1, B2), where B1 is the set formed from elements 
of B associated with an object and B2 is the set of 
elements of B associated with the corresponding 
background. 

Ç Let B1 =X and B2 =(W-X), Eq. (9.4-1) becomes 
 
A B = (AדB1)ž[AcדB2] 
 

Ç Thus, set A B contains all the (origin) points at which, 
simultaneously, B1 founded a match (ñhitò) in A and B2 
found a match in Ac. 

 

 

֯AМ᷄B 

҆B=(B1, B2) 

B1Ɫ detectᾼobject 

B2Ɫbackground 

(9.4-1) 

(9.4-2) 
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The Hit-or-Miss Transformation 

Ç By using the definition of set differences given in 

Eq(9.1-8) and the relationship between erosion and 

dilation given in Eq.(9.2-4), we can write Eq.(9.4-2) as 

 

A B = (AדB1) ï (A׃B2) 

 

 

Ç We refer to any of the preceding three equations as 

the morphological hit-or-miss transformation. 

(9.4-3) 
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Â The objective is to find the location of one of 
the shapes, say, X. 

Ç Let the origin of each shape be located 
at its center of gravity. 

Ç Let X be enclosed by a small window, W. 

Ç The local background of X with respect 
to W is defined as the et difference (W-X), 
as Fig. (b). 

Ç Fig. (c) shows the complement of A 

Ç Fig. (d) shows the erosion of A by X. 

Ç A ׄ  X may be viewed geometrically as 
the set of all locations of the origin X at 
which X found a match (hit) in A. 

Ç Fig. (e) shows the erosion of the 
complement of A by the local 
background set (W-X). 

Ç From Fig. (d) and (e), the set of locations 
for which X exactly fits inside A is the 
intersection of the erosion of A by X and 
the erosion of Ac by (W-X) as shown in 
Fig. (f). 

 

The Hit-or-Miss Transformation 
XӣWҔ ẃ A X erosion 

AC (W-X) erosion 
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Some basic Morphological Algorithm 

Â Boundary extraction 

Ç The boundary of a set A can be obtained by first eroding A by 

B and then performing the set difference between A and its 

erosion 

 

Ç Using a 5x5 structuring element of 1ôs would result in a 

boundary between 2 and 3 pixels thick. 

Ç When the origin of B is on the edges of the set, part of the 

structuring element may be outside the image. 

Â Assume that the values outside the borders of the image are 0. 

)()( BAAA Ⱦ-=b (9.5-1) 
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Some basic Morphological Algorithm 

Â Fig. 9.14 

Ç The structuring element as shown in Fig. 9.13(b). 

Ç Binary 1ôs are shown in white and 0ôs in black. 

Ç The boundary shown in Fig. 9.14(b) is one pixel thick. 
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Â Region Filling 
Ç In Fig. 9.15, A denotes a set containing a subset 

whose elements are 8-connected boundary points 

of a region. 

Ç Beginning with a point p inside the boundary, the 

objective is to fill the entire region with 1ôs. 

Ç Assume that all non-boundary points are labeled 0. 

Ç Assign a value of 1 to p to begin. 

Ç The following procedure then fills the region with 

1ôs: 

 

 

Ç where X0=p, and B is the symmetric structuring 

elements shown in Fig. 9.15(c). 

Ç The algorithm terminates at iteration step k if Xk=Xk-

1. 

Ç The set union of Xk and A contains the filled set 

and its boundary. 

,...3,2,1)( 1 =ÆÄ= - kABXX c
kk

Some basic Morphological Algorithm 
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Some basic Morphological Algorithm 

Â Example 9.6: Morphological region filling 

Ç An image composed of white circles with black inner spots. 

Ç The objective is to eliminate the reflections by region filling. 

Starting point 
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Some basic Morphological Algorithm 
Â Extraction of Connected Components 

Ç Let Y represent a connected component contained in a set A 

and assume that a point p of Y is known. 

Ç The following iterative expression yields all the elements of Y: 

 

 

Ç where X0=p, and B is a suitable structuring element, as shown 

in Fig. 9.17. 

Ç If Xk=Xk-1, the algorithm has converged and we let Y=Xk. 

,...3,2,1)( 1 =ÆÄ= - kABXX kk (9.5-3) 
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Some basic Morphological Algorithm 
Â Example 9.7: 

Ç Used for automated inspection. 

Ç Fig. 9.18(a) shows an X-ray image of a chicken breast that contains bone 
fragments. 

Â To detect foreign objects in processed food before packaging or shipping. 



32 

Convex sets 

Â Convex sets 

Ç A convex set is a set of elements from a vector space such 

that all the points on the straight line between any two 

points of the set are also contained in the set.  

Ç A set S in n-dimensional space is called a convex set if the 

line segment joining any pair of points of S lies entirely in S. 

If the set does not contain all the line segments, it is called 

concave.   
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Convex sets 
Â Convex Hull  

Ç The convex hull of a set of points is the smallest convex set 

that includes the points. For a two dimensional finite set the 

convex hull is a convex polygon. 

Ç http://www.cse.unsw.edu.au/~lambert/java/3d/ConvexHull.ht

ml 

http://www.cse.unsw.edu.au/~lambert/java/3d/ConvexHull.html
http://www.cse.unsw.edu.au/~lambert/java/3d/ConvexHull.html
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Some basic Morphological Algorithm 
Â Convex Hull 

Ç A set A is said to be convex if the straight line segment jointing 
any two points in A lies entirely within A. 

Ç The convex hull H of an arbitrary set S is the smallest convex set 
containing S. 

Ç The set difference H-S is called the convex deficiency of S. 

Ç The convex hull and convex deficiency are useful for object 
description. 

Ç Let Bi, i=1, 2, 3, 4, represent the four structuring elements in Fig. 
9.19 (a). 

Ç The procedure consists of implementing the equation: 
 
 
 
where 

Ç Let             . Then the convex hull of A is 

 
8

4

1

)(
=

=
i

iDAC

( ) ,...3,2,1 and  4,3,2,11 ==ÇÃ= - kiABXX i

k

i

k

AX i =0

i

conv

i XD =

(9.5-5) 

(9.5-4) 
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Some basic Morphological Algorithm 

Ç The procedure consists of 
iteratively applying the hit-
or-miss transform to A with 
B1; when no further changes 
occur, we perform the union 
with A and call the result D1. 

Ç The procedure is repeated 
with B2 until no further 
changes occur, and so on. 

Ç The union of the four 
resulting Dôs constitutes the 
convex hull of A. 

X indicates donôt care 
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Some basic Morphological Algorithm 
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Some basic Morphological Algorithm 
Â The thinning of a set A by a structuring element B, denoted by 

A  ׅB, can be defined by the hit-or-miss transform: 
      A  ׅB = A- (A B) = AӞ(A B)c 

Â A more useful expression for thinning A symmetrically is based 
on a sequence of structuring elements: 
 
 
where Bi is a rotated version of Bi-1 

Â Based on the concept, the thinning can be defined by  a 
sequence of structuring element 

 

 

Â The process is to thin A by one pass with B1, then thin the 
result with one pass of B2, and so on, until A is thinned with one 
pass of Bn. 

Â The entire process is repeated until no further changes occur. 

{} { }nBBBBB ,...,,, 321=

{} ))...))((...(( 21 nBBBABA ÃÃÃ=Ã (9.5-8) 

(9.5-7) 

(9.5-6) 
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Some basic Morphological Algorithm 
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Some basic Morphological Algorithm (cont.) 

Â Thickening 
Ç Thickening is the morphological dual of thinning and is 

defined by  
      A Bׇ = Aӟ( A B)  
where B is a structuring element suitable for thickening. 

Ç As in thinning , thickening can be defined as a sequential 
operation: 
     A {ׇ B}  =((é((A Bׇ1) Bׇ2)Ν) ׇBn)  

Ç The structuring elements used for thickening have the 
same form as those shown in Fig. 9.21(a) in connection 
with thinning, but with all 1ôs and 0ôs interchanged. 

Ç The usual procedure is to thin the background of the set in 
question and then complement the result.( ṿ█ ֥ Ȳ
Ҡ о ֥ᾼ￼ ∟ȲậẔ￼ ᾼ ȴ) 

Â Thicken a set A, we form C=Ac, thin C, and then form Cc. 

(9.5-10) 

(9.5-9) 
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Some basic Morphological Algorithm 

Â Thickening by background 
thinning 

Ç Thicken a set A, we form C=Ac, 
thin C, and then form Cc. 

Â ṿ█ ֥ ȲҠ о
֥ᾼ￼ ∟ȲậẔ￼
ᾼ ȴ 

Â о ֥AᾼḔ ȸ 

Ç ԒḖAᾼ￼ C=Ac 

Ç о C 

Ç ḖCᾼ Cc 
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Some basic Morphological Algorithm (cont.) 

Â Skeletons 

Ç As shown in Fig. 9.23, the notation of a skeleton, S(A), of a set 

A is intuitively simple. We deduce from this figure that 

Â If z is a point of S(A) and (D)z is the largest disk centered at z and 

contained in A, one cannot find a larger disk containing (D)z and 

included in A. The disk (D)z is called a maximum disk. 

Â The disk (D)z touches the boundary of A at two or more different 

places. 
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Some basic Morphological Algorithm (cont.) 

Â Skeletons 

Ç The skeleton of A can be expressed in terms of erosions 

and openings: 

 

 

 

with 

 

 

where B is a structuring element, and (A kׄB) indicates k 

successive erosions of A: 

8
K

k

k ASAS

0

)()(

=

=

BkBAkBAASk A)()()( ȾȾ -=

BBBAkBA ȾȾȾȾȾ ...)))(...()( = ῶӱA kװBᾼ–  

(9.5-11) 

(9.5-12) 

(9.5-13) 
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Some basic Morphological Algorithm (cont.) 
Ç K is the last iterative step before A erodes to an empty set. 

In other words, (A B– Ὲכ ֥›ᾼ ∟Ϛװ– ) 

 

 

Ç The formulation given in Eqs.(9.5-11) and (9.5-12) states 

that S(A) can be obtained as the union of the skeleton 

subsets Sk(A). 

Ç A can be reconstructed from these subsets by using the 

equation.( ֥AҠӦẔ ▐І ֥Sk(A) Ȳ kװ
(dilation)∟ ȴ) 

 

 

where (Sk(A)׃kB) denotes k successive dilations of Sk(A) 

 

{ }f̧= )(|max kBAkK Ⱦ

()( )8
K

k

k kBASA

0=

Ä=

()( ) ()( )( )( ) BBBASkBAS kk ÄÄÄÄ=Ä ......

(9.5-14) 

(9.5-15) 

(9.5-16) 
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Basic morphological Algorithm 
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Basic morphological Algorithm (cont.) 
Â (Pruning) 

Ç Since thinning and skeletonizing algorithms tend to leave 
parasitic components that need to be ñcleaned upò by post-
processing.  

Ç Assumptionsȸ 

Â Assume that the length of a parasitic component does not exceed a 
specified number of pixels.  

Â The solution is based on suppressing a parasitic branch by 
successively eliminating its end point. 

Ç Thinning of an input set A with a sequence of structuring 
elements designed to detect only end points achieves the desired 
result. Let 
 
 
where {B} denotes the structuring element sequence shown in Fig. 
9.25(b) and (c). 

Â The sequence of structuring elements consists of two different 
structures, each of which is rotated 90ï for a total of eight elements. 

{}BAX Ã=1
(9.5-17) 
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Basic morphological Algorithm (cont.) 
Ç Applying Eq(9.5-17) to A three times yields the set X1 shown in Fig. 9.25(d). 
The next step is to ñrestoreò the character to its original form, but with the 
parasitic branches removed. 

Ç Forming a set X2 containing all end points in X1  
 
 
 
 
where the Bk are the same end-point detectors shown in Figs. 9.25(b) and 
(c). 

Ç The next step is dilation of the end points three times, using set A as a 
delimiter: 
 
      X3=(X2׃H)ӞA 
 
where H is a 3x3 structuring element of 1ôs. 

Ç Finally, the union of X3 and X1 yields the desired result, 
 
      X4 = X1ӟ X3 

Ç  
 

 

( )8
8

1

12

=

Ã=

k

kBXX
(9.5-18) 

(9.5-19) 

(9.5-20) 
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Basic morphological Algorithm 

Â (Pruning) 

Ç Ӧὑ оц ▐о∟Ȳ ϚṷЊиќȲ Ȳ֪ױ
ᾎȴ 

Ç Ӑ Ἐȸ 

Â parasitic componentᾼ ⇔Л Ϛ ứ Ȳpruningᾼ
ᾎ֯ὑ Ӧ ᾼᵔ (end point) Ȳẃ ю ӢиὬȴ 

Â ᵂᾎ  

Ç ֥A а Bᾼ оȲ 

Ç ᷄ҏ Aᾼend point  

Ç X2 ᴩdilation X3=(X2׃H)ӞA 

Ç ậX1ế X3ᾼ ȲX4 = X1ӟ X3 

 

 

{}BAX Ã=1

( )8
8

1

12

=

Ã=

k

kBXX
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Basic morphological Algorithm (cont.) 
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Summary of Morphological Operations on 

Binary Images 



50 

Summary of Morphological Operations on 

Binary Images (cont.) 
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Summary of Morphological Operations on 

Binary Images (cont.) 
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Summary of Morphological Operations on 

Binary Images (cont.) 
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Summary of Morphological Operations on 

Binary Images (cont.) 
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Extensions to gray-scale images 
Â In this section, we extend to gray-scale images the basic 

operations of dilation, erosion, opening, and closing. 

Â Define: 

Ç f(x,y): input image 

Ç b(x,y): structuring element 

Ç These functions are discrete, ie., if Z denotes the set of real 
integers, the assumption is that (x,y) are integers from ZxZ and 
that f and b are functions that assign a gray-level value to each 
distinct pair of coordinates (x,y). 

Â Dilation (f bᾼᴊ ) 

Ç Gray-scale dilation of f by b, denoted f׃b, is defined as 

 

 

Ç where Df and Db are the domains of f and b, respectively. 
 

 

( )( ) ( ) ( )( )( ) ( ){ }bf DyxDytxsyxbytxsftsbf ÍÍ--+--=Ä ,;,|,,max,
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Extensions to gray-scale images (cont.) 
Ç By means of 1-D function, Eq.(9.6-1) reduces to 

 

Ç The function f(-x) is simply f(x) mirrored with respect to the 

origin of the x axis. 

Ç The function f(s-x) moves to the right for positive s, and to 

the left for negative s. 

Ç The requirements that the value of (s-x) has to be in the 

domain of f  and that the value of x has to be in the domain 

of b imply that f and b overlap. 

Â where the two sets have to overlap by at least one element. 

Ç f sliding by b is really no different than b sliding by f. 

Â The actual mechanics of gray-scale dilation are easier to 

visualize if b is the function that slides past f. 

 

 

( )( ) ( ) ( )( )( ) ( ){ }bf DyxDytxsyxbytxsftsbf ÍÍ--+--=Ä ,;,|,,max,
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Extensions to gray-scale images (cont.) 
Â At each position of the structuring element the value of dilation at that 

point is the maximum of the sum of f and b in the interval spanned by b. 
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Extensions to gray-scale images (cont.) 

Â The general effect of performing dilation on a 

gray-scale images is: 

Ç If all the values of the structuring element are 

positive, the output image tends to be brighter 

than the input. 

Ç Dark details either are reduced or eliminated, 

depending on how their values and shapes relate 

to the structuring element used for dilation. 

Ç Dilation∟ Ӣᾼ ѩ Ở Ὑ‐ȲѹЊᾼ
ᴥ юἨ ȴ 
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Extensions to gray-scale images (cont.) 

Â Erosion (f b– ) 

 

 

Ç Erosion∟ Ӣᾼ ѩ Ở ȲѹЊᾼὙ‐ ю
Ἠ ȴ 

 

 

( )( ) ( ) ( )( )( ) ( ){ }bf DyxDytxsyxbytxsftsbf ÍÍ++-++= ,;,|,,min,Ⱦ
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Extensions to gray-scale images 

Flat-top structuring element in the shape of a parallelepiped  
of unit height and size 5*5 pixels  

5 
1 

5 


